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The Schrödinger equation of hydrogenic atoms and the Hartree-Fock equations of some many-electron
atoms are solved using interpolating wavelets as basis functions. The nonstandard operator form is used to
compute operators in basis sets including multiple resolution levels. We introduce an algorithm for converting
matrices from nonstandard operator form to standard operator form. We also consider the different components
of the Hamiltonian and Fock operators separately and derive analytic formulas for their evaluation. Extension
to many-electron atoms is done within the Hartree-Fock formalism. Convergence of atomic parameters such as
orbital eigenvalues with respect to the number of resolution levels is inspected numerically for hydrogenlike
atoms(ions) and some light many-electron atoms(helium, lithium, beryllium, neon, sodium, magnesium, and
argon).
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I. INTRODUCTION

Use of wavelets for solving differential equations and par-
tial differential equations in physics has recently been inves-
tigated in the literature[1–8]. One particular application is
solving the Schrödinger equation of a quantum mechanical
system using wavelets as basis functions. Fischer and De-
franceschi have used Daubechies wavelets[9,10] to solve the
Schrödinger equation of hydrogenlike atoms[2] and they
have also analyzed the Hartree-Fock method with continuous
wavelet transform[6]. Electronic structure calculations with
the Hartree-Fock(HF) method and wavelets have also been
done by Yamaguchi and Mukoyama[11].

Most authors have used compactly supported orthonormal
wavelets for electronic structure calculations. Daubechies
wavelets have been used by Fischer and Defranceschi[2]
and Wei and Chu[3], Meyer wavelets by Yamaguchi and
Mukoyama[4], and Mexican hat wavelets by Choet al. [5]
Orthonormal wavelet families provide several useful
properties—they possess recursive refinement relations[10],
and they lead to fast discrete wavelet transform for multi-
resolution analysis.

Interpolating wavelets are a biorthogonal wavelet family.
They are not an orthonormal basis ofL2sRd. Interpolating
wavelets enable simple computation of matrix elements and
expansion of functions in a basis function set because of the
special form of the dual scaling functions and dual wavelets
[8,12]. Since the dual scaling functions and dual wavelets are
sums ofd functions the integrals involving these functions
usually require evaluating some function in a finite set of
points. Goedecker and Ivanov[7] have used interpolating

wavelets to solve the Coulomb problem. Wavelet methods
are closely connected to point-grid based methods that also
generalize to higher than one dimension[13,14]. Lippert et
al. [12] have used interpolating wavelets in point-grid based
methods. Mann has done Hartree-Fock calculations using
point sets with logarithmic scaling[15]. The basis function
sets that we have used, where the accuracy is increased by
adding basis functions of finer resolution levels near the
nucleus, resemble this kind of point grid. In our treatment of
the HF method matrices of all the necessary operators are
computed and calculations are implemented as matrix and
vector operations. We are able to derive analytic formulas for
the matrix elements. We handle the various singularities in a
similar way as Johnsonet al. [16].

Representation of operators in orthonormal wavelet bases
has been studied, for example, by Beylkinet al. [17–19]. We
introduce an algorithm to compute the standard operator
form (SOF) of an arbitrary operator from its nonstandard
operator form(NSOF). The nonstandard operator form de-
couples different resolution levels, which is an important as-
pect for numerical approaches. We chose to use standard
operator form because it enables the direct use of standard
matrix and vector algorithms(e.g., solution of the matrix
eigenproblem). However, for large basis sets and several
resolution levels the SOF computations become slow and
taking advantage of the special structure of NSOF matrices
might make the computations significantly faster.

In the next section we first present the relevant concepts
of hydrogenlike atoms. Then the Hartree-Fock formalism for
many-electron atoms is briefly summarized. We present de-
tails of the basis set in Sec. III and the formulation of HF
equations using interpolating wavelets in Sec. IV. The struc-
ture of matrices in standard and nonstandard operator form is
presented in Sec. V[8,17,19]. Section VI discusses details of
the computation of various operators and some other compu-
tational aspects. We give some numerical results in Sec. VII
and conclusions are presented in the last section.
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We use atomic units[20,21] throughout this articlese
=m="=4p«0=1d. We use the symbolA to denote a matrix

of an arbitrary linear operatorÂ in the given basis. The vec-
tor space spanned by the basis function setS is denoted by
LsSd.

II. SCHRÖDINGER EQUATIONS OF ATOMS

A. Schrödinger equation of a hydrogenlike atom

Due to the spherical symmetry of atoms the three-

dimensional one-electron Schrödinger equationĤc=«c of
hydrogenlike atoms is separated into a one-dimensional ra-
dial part and a two-dimensional angular part. The exact so-
lutions to the latter are spherical harmonicsY,m,

where, and
m, are the orbital quantum number(angular momentum
quantum number) and orbital magnetic quantum numbers,
respectively. WritingRn, for the radial wave function, the
hydrogenlike orbitals arecn,m,

sr ,u ,fd=Rn,srdY,m,
su ,fd,

where n is the principal quantum number. The radial
Schrödinger equation for a hydrogenlike atom is

F−
1

2

d2

dr2 −
Z

r
+

,s, + 1d
2r2 GPn,srd = «n,Pn,srd, s1d

whereZ is the atomic number,«n, are the orbital energies,
andPn,srd=rRn,srd are the radial wave functions multiplied
by r. The functionsPn,srd are called wave functions too. In
general, the radial wave functionPn, hasn−,−1 nodes[22].

The HamiltonianĤ consists of three parts as

Ĥ = T̂ + V̂ + Ĉ,, s2d

where

T̂ = −
1

2

d2

dr2 , s3d

V̂ = −
Z

r
, s4d

Ĉ, =
,s, + 1d

2r2 . s5d

With a finite basis function sethzpsrdjp=1
N the approximate

solutionsPi of Eq. (1) can be expanded as

Pi = o
p=1

N

ci
spdzp. s6d

In case a finite biorthogonal wavelet basis set is used Eq.(1)
is represented as a matrix eigenproblem

Hc = «c, s7d

whereH is given by

H = sHpqdp,q=1
N =E

R
z̃psrdĤzqsrddr s8d

and

ci = sci
spddp=1

N . s9d

The functionsz̃psrd are so called dual basis functions(see
Sec. III). Equations(7) and(8) are consequences of the bior-
thogonality relations(26)–(29). Diagonalization of the eigen-
problem(7) for each orbitali yields N eigenvectors

cj = scj
spddp=1

N s10d

and the corresponding eigenvalues« j as a solution. We
choose the eigenvalue«i of eigenvectorci so that the wave
function corresponding to the eigenvector hasni −,i −1
nodes and satisfies the boundary conditions at zero and in-
finity. Note that all functionsPn,srd vanish at both limits. If
we change the unit system so that the new unit of length isu
atomic units of length and the energy is not changed, the
Schrödinger equation(1) of the hydrogen atom becomes

S−
1

2

1

u2

d2

dr2 −
1

u

Z

r
+

1

u2

,s, + 1d
2r2 DPn,srd = «n,Pn,srd

s11d

and the HamiltonianĤ and its components are changed ac-
cording to Eq.(11).

B. Hartree-Fock equations

The Schrödinger equationĤC=EC of a many-electron
atom leads to Hartree-Fock equations in the central field ap-
proximation and with Slater determinant wave functions
[20–22]. The Slater integrals between the two radial wave
functionsPi andPj are defined as

Yij
ksrd =E

0

`

Pisr8dgksr,r8dPjsr8ddr8, s12d

where

gksr,r8d =
r,

k

r.
k+1 , s13d

r, = minhr,r8j, s14d

r. = maxhr,r8j. s15d

The HF equation for the orbitalPi with the principal
quantum numberni and orbital quantum number,i is

S−
1

2

d2

dr2 −
Z

r
+

,is,i + 1d
2r2 + DisrdDPisrd

= «iPisrd + o
jsÞid=1

Q

wjd,i, j
«i j Pjsrd + Eisrd, s16d

where

Disrd = o
j=1

Q

swj − di jdYjj
0 srd − swi − 1dAisrd, s17d
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Eisrd = o
jsÞid=1

Q

wjBijsrdPjsrd, s18d

and

Aisrd =
2,i + 1

4,i + 1 o
k.0

S,i k ,i

0 0 0
D2

Yii
ksrd, s19d

Bijsrd =
1

2o
k
S,i k , j

0 0 0
D2

Yji
ksrd, s20d

Z is the atomic number, s21d

Q is the number of orbitals, s22d

wi is the number of electrons in orbitali , s23d

S j1 j2 j3
m1 m2 m3

D is the Wigner 3-j symbol. s24d

The wave functionsPisrd are normalized with the condition

E
0

`

fPisrdg2dr = 1. s25d

The nondiagonal Lagrange multipliers«i j , i Þ j , that en-
sure orthogonality of the orbitals may be neglected for
closed-shell atoms. We neglect the nondiagonal Lagrange
multipliers for open-shell atoms, too, and the exact orthogo-
nality of atomic orbitals is not preserved for them.

III. INTERPOLATING WAVELETS AS BASIS SET

A. Biorthogonal wavelet families

For a more detailed description of the biorthogonal wave-
let families and interpolating wavelets, see Ref.[8]. A bior-
thogonal wavelet family of degreem is characterized by four

filters hj, gj, h̃j, and g̃j. The degreem is chosen to be even
and large enough so that all the nonzero elements of the
filters are included by the indicesj =−m, . . . ,m. The two-
index basis functions are

wi
ksxd = ws2kx − id, s26d

ci
ksxd = cs2kx − id, s27d

w̃i
ksxd = 2kw̃s2kx − id, s28d

c̃i
ksxd = 2kc̃s2kx − id. s29d

The indexk is called the scaling index and the indexi the
translation index.

The functionsw, c, w̃, andc̃ satisfy the following refine-
ment relations:

wsxd = o
j=−m

m

hjws2x − jd, s30d

csxd = o
j=−m

m

gjws2x − jd, s31d

w̃sxd = o
j=−m

m

h̃jw̃s2x − jd, s32d

c̃sxd = o
j=−m

m

g̃jw̃s2x − jd. s33d

The basis functions defined by Eqs.(26)–(29) satisfy the
biorthogonality relations

E
−`

`

w̃i
ksxdw j

ksxddx= di j , s34d

E
−`

`

c̃i
ksxdw j

qsxddx= 0, k ù q, s35d

E
−`

`

ci
ksxdw̃ j

qsxddx= 0, k ù q, s36d

E
−`

`

ci
ksxdc̃ j

qsxddx= dkqdi j . s37d

B. Construction of the basis function set

To preserve the orthogonality relations of the basis func-
tions the scaling functions and wavelets in the basis cannot
be chosen arbitrarily. The basis setB=hz1, . . . ,zNj consists of
scaling functionswi

k of resolution levelk=kmin and wavelets
ci

k of resolution levelsk=kmin, . . . ,kmax. The dual basis func-
tions are defined by

z̃ j =Hw̃i
k if z j = wi

k,

c̃i
k if z j = ci

k.
J s38d

Different resolution levels of the basis are denoted asSkmin
,

Dkmin
, . . . ,Dkmax

, whereS means a set consisting of scaling
functions andD a set consisting of wavelets. This kind of
basis is used directly for the standard operator form. For the
nonstandard operator form,Sk parts with indicesk=kmin
+1, . . . ,kmax are inserted in the basis. We defineNk to be the
number of basis functions inSk andMk to be the number of
basis functions inDk. For Sk=hwi1

k , . . . ,wiNk

k j we definemk,a

= ia and forDk=hci1
k , . . . ,ciMk

k j we definenk,a= ia. The NSOF

basis function setBNSOF=hz1, . . . ,zNNSOF
j consists of parts

Skmin
,Dkmin

, . . . ,Skmax
,Dkmax

. The basis functions in the parts
Skmin

,Dkmin
, . . . ,Dkmax

are the same as in the corresponding
parts of the basis setB. The basis functions in the parts
Skmin+1, . . . ,Skmax

are chosen so thatLsSk,Dkd,LsSk+1d. The
radial wave function we want to expand should be zero at the
nucleus. We exclude the functionw0

kmin from the basis in or-
der to force the wave functionsPn, to be zero atr =0. This
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also makes the matrix of operatorR̂, defined by

sR̂fdsrd = ur ufsrd, s39d

nonsingular(an empirical observation). See also Ref.[16]
for the handling of singularities. The projection of an arbi-
trary function f in L2sRd to the space spanned by a finite
number of basis functions is

fsxd = o
i

vi
skmindwi

kminsxd + o
k=kmin

kmax

o
i

wi
skmaxdci

ksxd. s40d

In this article, a vector consisting of coefficients ofSk basis
functions is denoted byvskd and a vector consisting of coef-
ficients ofDk basis functions bywskd.

We use a similar basis set, denoted byB, for Hartree-Fock
calculations. The scaling functionw0

kmin is excluded fromB
due to the boundary conditions of wave functions at zero and
singularities of the potential, the centrifugal potential, and
the functions 1/rk+1 (occurring in Slater integrals) at r =0.
However, since the Slater integrals do not generally vanish at
r =0 we include w0

kmin in the basis setB0=Bø hw0
kminj

=hz1
s0d , . . . ,z

N8
s0dj. The basis change matrix fromB to B0 is

denoted byL1→0 and the basis change matrix fromB0 to B
by L0→1. We do not need to compute the matrix of operator

R̂−1 (corresponding to division byr) in basisB0. We also use
the basis set

Bs = hwi
kmax+1ui P Isuj s41d

consisting of scaling functions of resolution levelkmax+1
wherekmax is the maximum resolution level in basisB and
Is,Z is finite. The basis setBs is constructed so that
LsBd,LsBsd and LsB0d,LsBsd. Expansion of an arbitrary
function f in the scaling function basisBs is given by

fsrd = o
iPIs

aiwi
kmax+1srd. s42d

C. Forward and backward wavelet transforms

The forward wavelet transform is defined by the equations
[8]

si
k−1 = o

j=−m

m

h̃jsj+2i
k , s43d

di
k−1 = o

j=−m

m

g̃jsj+2i
k , s44d

wheresi
k is the coefficient for the basis functionwi

k anddi
k is

the coefficient for the basis functionci
k. The backward wave-

let transform is defined by the equations[8]

s2i
k+1 = o

j=−m/2

m/2

sh2jsi−j
k + g2jdi−j

k d, s45d

s2i+1
k+1 = o

j=−m/2

m/2

sh2j+1si−j
k + g2j+1di−j

k d. s46d

The forward wavelet transform defined by Eqs.(43) and
(44) can be written in matrix form as

vsk−1d = Z̃Sk

Sk−1vskd, s47d

wsk−1d = Z̃Sk

Dk−1vskd, s48d

where

Z̃Sk

Sk−1 = sh̃mk,b−2mk−1,a
da=1,b=1
Nk−1,Nk , s49d

Z̃Sk

Dk−1 = sg̃mk,b−2nk−1,a
da=1,b=1
Mk−1,Nk . s50d

The backward wavelet transform defined by Eqs.(45) and
(46) can be similarly written in matrix form as

vsk+1d = BSk

Sk+1vskd + BDk

Sk+1wskd, s51d

where[8]

BSk

Sk+1 = sZSk+1

Sk dT, s52d

BDk

Sk+1 = sZSk+1

Dk dT, s53d

and

ZSk+1

Sk = shmk+1,b−2mk,a
da=1,b=1
Nk,Nk+1 , s54d

ZSk+1

Dk = sgmk+1,b−2nk,a
da=1,b=1
Mk,Nk+1 . s55d

We use the symbolsZ̃ and Z for the forward wavelet

transform instead ofF̃ andF (as in Ref.[8]) to avoid confu-
sion with the Fock operatorF.

D. Interpolating wavelets

Interpolating wavelets are one biorthogonal wavelet fam-
ily [8,12]. For an interpolating wavelet family of degreem,
the mother scaling functionw is constructed by recursively
applying polynomial interpolation of degreem−1 to datasi
=di,0 and the mother dual scaling function is

w̃sxd = dsxd, s56d

whered is the Dirac delta function. For interpolating wave-
lets the coefficientshj satisfy

hj = ws j /2d, j = − m, . . . ,m. s57d

The following symmetry equations hold for interpolating
scaling functions and wavelets:

wi
ksxd = w−i

k s− xd, s58d

ci
ksxd = c−i−1

k s− xd. s59d

IV. SOLVING HARTREE-FOCK EQUATIONS

For an arbitrary operatorÂ, we denote the matrix ofÂ in
basisB by A and the matrix in basisB0 by As0d. We define
some operators to be used:
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sR̂fdsrd = ur ufsrd, s60d

sR̂−1fdsrd = fsrd/ur u, s61d

sÛ0fdsrd =E
0

ur u

fsr8ddr8, s62d

sÛ`fdsrd =E
ur u

`

fsr8ddr8, s63d

Ŝk = R̂−1
k+1Û0R̂

k + R̂kÛ`R̂−1
k+1, s64d

wherekPZ, kù0, andÂnf =Â¯ Âf where Â is appliedn
times. Let f PL2sRd. We define the multiplication operator

M̂sfd=Â by setting

sÂgdsrd = fsrdgsrd s65d

for an arbitrary functiongPL2sRd. If f is a vector(function)
in a wavelet basisB8 we define the matrixMsfd to be the

matrix of operatorM̂sfd in the basisB8 (f is kept constant).
Let f and g be arbitrary vectors(functions) in the wavelet
basisB8. We definef !g to be the projection of the function
hsrd= fsrdgsrd to LsB8d.

We omit the nondiagonal Lagrange multipliers and Eqs.
(16) can be written as matrix eigenvalue equations[23]

Fici = «ici , s66d

where the Fock operatorFi for orbital i is defined by

Fi = Hi
0 + Ji − Ki . s67d

The wave functionsPi are given by

Pi = o
p=1

N

ci
spdzp. s68d

The single-electron Hamiltonian operator is defined as

Hi
0 = T + V + C,i

, s69d

where the components are defined as in the case of hydro-
genlike atoms, Eqs.(3)–(5).

The Slater direct integral operator is defined by

Ĵi = o
j=1

q

swj − di jdĴj
0 − swi − 1d

2,i + 1

4,i + 1 o
k.0

S,i k ,i

0 0 0
D2

Ĵi
k,

s70d

where

sĴi
kPjdsrd = Yii

ksrdPjsrd s71d

and the Slater exchange integral operator by

K̂i =
1

2 o
jsÞid=1

q

wjo
k
S,i k , j

0 0 0
D2

K̂j
k, s72d

where

sK̂j
kPidsrd = Yij

ksrdPjsrd. s73d

Note that in the definition of operatorK̂j
k the argument of the

operator occurs only in the Slater integralYij
ksrd. This opera-

tor is linear, though. For matrices of direct Slater integral
operators we have

Ji
k = L0→1M

s0d
„Sk

s0dsPi ! Pid…L1→0 s74d

and for matrices of exchange integral operators

Kj
k = L0→1M

s0dsPjdSk
s0dMs0dsPjdL1→0, s75d

where

S0
s0d = L1→0R

−1U0L0→1 + U`
s0dL1→0R

−1L0→1 s76d

and

Sk
s0d = L1→0sR−1dk+1U0R

kL0→1 + sRs0ddkU`
s0dL1→0sR−1dk+1L0→1

s77d

for k.0.
The HF equations are solved by an iterative procedure.

We use the standard procedure given in[22] modified for the
matrix form of the HF equations presented in this section.
The following input parameters are needed for the HF itera-
tion algorithm: the weight coefficientsai, i =1, . . . ,Q [see
formula (78)]; the precision parameterz0 characterizing the
desired accuracy of the solution[see formulas(79) and(80)];
and the type of matrix normi ·ip used to test the convergence
of the iteration[see formula(79)].

The algorithm for HF iteration is as follows.
(1) Compute the Fock matricesFi for each orbitali with

formula (67). We setJi =0 andKi =0 in the first step, i.e.,
hydrogenic wave functions are used as the first trial wave
functions.

(2) Solve the matrix eigenvalue equations(66) for each
orbital i. Each eigenvalue equation yieldsN solutions, where
N is the number of basis functions. We choose the solution
satisfying the following conditions: the wave function is odd
with respect to inversion:Pisrd=−Pis−rd; the wave function
hasni −,i −1 nodes, whereni and,i are the principal quan-
tum number and orbital quantum number of the orbitali;
and, we choose the solution with lowest possible eigenvalue
«i among the solutions satisfying the other two conditions.

Normalize the wavefunctions with Eq.(25). Let «i be the
eigenvalue andPi

new the normalized wavefunction for each
orbital i. We need not explicitly test the boundary conditions
of wave functions at zero and infinity in the method de-
scribed in this article.

(3) Let Pi
prev be the old output wave functions from the

previous iteration. Compute the new output wave functions
as normalized linear combinations of the new wave functions
and the old output wave functions as

Pi = CifaiPi
new+ s1 − aidPi

prevg, i = 1, . . . ,Q. s78d

The normalization coefficientsCi are determined by Eq.
(25). According to Ref.[22] the values ofai are usually
about 0.5 but they may be anywhere from 0.05 to 1.1.

(4) Compute the matricesJi
k andKi

k for all the necessary
combinations ofi, j , and k. Use the wave functions com-
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puted in step 3. Compute the matricesJi and Ki with Eqs.
(70) and(72), substituting matrices in the place of operators.

(5) Compute the quantity

z= max
i=1,. . .,Q

iFi − Fi
previp, s79d

whereFi
prev are the Fock operators from the previous itera-

tion. If

z, z0 s80d

we have obtained self-consistent solutions for the HF equa-
tions and the iteration is stopped.

(6) Return to step 1.
Finally, we evaluate the total energy of the atom with the

self-consistent solutions for the wave functionsPi and ener-
gies«i from the formula

E = o
i=1

Q

wi«i −
1

2o
i=1

Q

wikPiuJi − KiuPil, s81d

wherewi are the occupation numbers.

V. STANDARD OPERATOR FORM AND NONSTANDARD
OPERATOR FORM

The eigenvalue equations are solved using the standard
operator form, which represents the operator in the chosen

basis. The elements of matrixA of an operatorÂ in the SOF
are defined by

Aij =E
−`

`

z̃isxdÂz jsxddx, s82d

where z j, j =1, . . . ,N, are the basis functions andz̃i, i
=1, . . . ,N, are the dual basis functions defined by Eq.(38).

The standard operator form of an operator can be obtained
from the matrix elements in nonstandard operator form. The
nonstandard operator form decouples different resolution
levels in the basis set and makes derivation of explicit for-
mulas for the matrix elements easier[8,17,19]. The nonzero

blocks of nonstandard operator formA of the operatorÂ are
defined by

A
ab

Skmin
Skmin =E

−`

`

w̃mkmin,a

kmin sxdÂwmkmin,b

kmin sxddx,

a = 1, . . . ,Nkmin
, b = 1, . . . ,Nkmin

, s83d

and

Aab
SkDk =E

−`

`

w̃mk,a

k sxdÂcnk,b

k sxddx, a = 1, . . . ,Nk,

b = 1, . . . ,Mk, s84d

Aab
DkSk =E

−`

`

c̃nk,a

k sxdÂwmk,b

k sxddx, a = 1, . . . ,Mk,

b = 1, . . . ,Nk, s85d

Aab
DkDk =E

−`

`

c̃nk,a

k sxdÂcnk,b

k sxddx, a = 1, . . . ,Mk,

b = 1, . . . ,Mk, s86d

wherek=kmin+1, . . . ,kmax.
We introduce an algorithm for converting a matrix from

NSOF to SOF. The NSOF blocks(SkSk, SkDk, DkSk, and
DkDk) are computed on the fly. The algorithm is as follows.

Input
The NSOF basisB=sSkmin

,Dkmin
, . . . ,Skmax

,Dkmax
d.

The functionM that calculates the NSOF matrix elements
according to formulas(83)–(86).

Output. Matrix in standard operator form.
Algorithm
(1) If the basis contains only partsSkmin

andDkmin
the SOF

matrix is

A = SASkmin
Skmin ASkmin

Dkmin

ADkmin
Skmin ADkmin

Dkmin
D , s87d

where the blocks are computed with formulas(83)–(86).
Else
(2) Compute matrixAprev by calling the algorithm recur-

sively with basisBprev=sSkmin
,Dkmin

, . . . ,Skmax−1,Dkmax−1d.
(3) ComputeASkmax

Dkmax with function M according to for-
mula (84).

(4) ComputeADkmax
Skmax with function M according to for-

mula (85).
(5) ComputeADkmax

Dkmax with function M according to for-
mula (86).

(6) Calculate matricesASkmin
Dkmax and ADqDkmax where q

=kmin, . . . ,kmax−1 by applying forward wavelet transforms to
matrix ASkmax

Dkmax using the formulas

ASkmin
Dkmax = Z̃Skmin+1

Skmin Z̃Skmin+2

Skmin+1
¯ Z̃Skmax−1

Skmax−2Z̃Dkmax

Skmax−1ASkmax
Dkmax,

s88d

ADqDkmax = Z̃Sq+1

Dq Z̃Sq+2

Sq+1
¯ Z̃Skmax−1

Skmax−2Z̃Dkmax

Skmax−1ASkmax
Dkmax. s89d

(7) Calculate matricesADkmax
Skmin and ADkmax

Dq where q
=kmin, . . . ,kmax−1 by applying backward wavelet transforms
to matrix ADkmax

Skmax using the formulas

ADkmax
Skmin = ADkmax

SkmaxBSkmax−1

Dkmax BSkmax−2

Skmax−1
¯ BSkmin+1

Skmin+2BSkmin

Skmin+1,

s90d

ADkmax
Dq = ADkmax

SkmaxBSkmax−1

Dkmax BSkmax−2

Skmax−1
¯ BSq+1

Sq+2BDq

Sq+1. s91d

(8) Construct the resultA from matrices calculated in
steps 2, 5, 6, and 7 using the formulas

Avert =1
ASkmin

Dkmax

ADkmin
Dkmax

A
ADkmax−1Dkmax

2 , s92d
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Ahoriz =1
ADkmax

Skmin

ADkmax
Dkmin

¯

ADkmax
Dkmax−1

2
T

, s93d

A = SAprev Avert

Ahoriz ADkmax
Dkmax

D . s94d

VI. EVALUATION OF MATRIX ELEMENTS AND OTHER
COMPUTATIONAL ASPECTS

A. Notation

We use the following notation for matrix elements of an

operatorÂ in nonstandard operator form[17]:

ai j
k =E

−`

`

c̃i
ksxdÂc j

ksxddx, s95d

bi j
k =E

−`

`

c̃i
ksxdÂw j

ksxddx, s96d

gi j
k =E

−`

`

w̃i
ksxdÂc j

ksxddx, s97d

sij
k =E

−`

`

w̃i
ksxdÂw j

ksxddx. s98d

In this section we denote the matrix of an operatorÂ in an
arbitrary wavelet basisB (with or without the functionw0

kmin)
by A.

B. Differentiation operator

The basic integral for a differentiation operatordp/dxp is
defined as

ai =E
−`

`

w̃sxd
dp

dxpwsx − iddx. s99d

The matrix elements of operatordp/dxp in nonstandard op-
erator form in an interpolating wavelet family are

ai j
k = − 2sk+1dp o

n=−m

m

g̃na2j−2i+1−n, s100d

bi j
k = 2sk+1dp o

n=−m

m

o
m=−m

m

g̃nhma2j−2i+m−n, s101d

gi j
k = − 2sk+1dpa2j−2i+1, s102d

sij
k = 2kpaj−i . s103d

See Ref.[8].

C. Function operator

By a function operator we mean multiplication by a given
function f as defined by Eq.(65). The NSOF matrix elements
of a function operator in the interpolating wavelet basis are

ai j
k = fS2i + 1

2k+1 Ddi j , s104d

bi j
k = h2i−2j+1F fS j

2kD − fS2i + 1

2k+1 DG , s105d

gi j
k = 0, s106d

sij
k = fS i

2kDdi j . s107d

D. Operator R̂

The operatorR̂ is a function operator with

sR̂gdsrd = ur ugsrd. s108d

Its NSOF matrix elements are obtained from formulas
(104)–(107) where we setfsrd= ur u. If the basis does not con-
tain the functionw0

kmin the matrixR does not become singular
and we can computeR−1 as an inverse matrix.

We obtain the potential energy operator as

V = − R−1 s109d

and the centrifugal potential operator as

C, =
,s, + 1d

2
sR−1d2. s110d

E. Operator Û0

The matrix elements of operatorÛ0 in the nonstandard
operator form are

ai j
k = − 2−k−1 o

n=−m

m

g̃nfFsu2i + nu − 2j − 1d − Fs− 2j − 1dg,

s111d

bi j
k = 2−k o

n=−m

m

g̃nFFSU2i + n

2
U − jD − Fs− jdG , s112d

gi j
k = − 2−k−1fFs2ui u − 2j − 1d − Fs− 2j − 1dg, s113d

sij
k = 2−kfFsui u − jd − Fs− jdg, s114d

where Fsxd is the integral function of the mother scaling
function wsxd. We evaluated the functionF with numerical
integration using the fourth-order Runge-Kutta method. The
function F can also be calculated analytically using the re-
finement equation(30). When the distance between adjacent
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points in numerical integration is 2−8 the maximum deviation
of the numerical result from the analytical one is of the order
of magnitude 10−11.

F. Operator Û`

The matrix elements ofÛ` in the nonstandard operator
form are

ai j
k = − 2−k−1 o

n=−m

m

g̃nfFs`d − Fsu2i + nu − 2j − 1dg,

s115d

bi j
k = 2−k o

n=−m

m

g̃nFFs`d − FSU2i + n

2
U − jDG , s116d

gi j
k = − 2−k−1fFs`d − Fs2ui u − 2j − 1dg, s117d

sij
k = 2−kfFs`d − Fsui u − jdg. s118d

G. Multiplication operator

The multiplication operatorM̂sfd is defined in Sec. IV. Let
f be a vector(function) in an arbitrary wavelet basisB. We
first convert the vectorf in basisB to a scaling function basis
Bs using formula(42). HereBs is defined according to Eq.
(41) so thatLsBd,LsBsd. Conversion is done with backward
wavelet transforms. The matrixMsfd is computed using the
formulas for matrix elements of a function, Eqs.(104)–(107),
where we set

fS i

2kD = as2kmax+1−kdi s119d

and

fS i

2k+1D = as2kmax−kdi . s120d

H. Product function f !g

The product functionf !g is defined in Sec. IV. The vec-
tors f andg in the arbitrary wavelet basisB are converted to
the scaling function basisBs, whereLsBd,LsBsd, so that we
have

fsrd = o
i

aiwi
kmax+1srd s121d

and

gsrd = o
i

biwi
kmax+1srd. s122d

The expansion of the product functionhsrd= fsrdgsrd in the
scaling function basisBs is given by

hsrd = o
i

ciwi
kmax+1srd, s123d

whereci =aibi for all i. To computef !g, the vector represen-
tation for the functionhsrd given by Eq.(123) is converted to
the basisB using forward wavelet transforms.

TABLE I. Effects of operators on the parities of functions(“o”
means odd and “e” means even).

Pni,i
Pnk,k

prev TPni,i
VPni,i

C,Pni,i
Jni,i

Pni,i
Kni,i

Pni,i

o o o o o o o

o e o o o o e

e o e e e e o

e e e e e e e

TABLE II. Parameters used for 1s orbitals of hydrogenlike
atoms.

Z u kmin B

1 1.0 0 10

2 1.0 1 8

10 0.25 2 12

50 0.031 25 1 10

100 0.031 25 2 20

FIG. 1. Computed 1s radial wave functionsP1ssrd andR1ssrd of
the hydrogen atom withL=8. There is no visible deviation from the
exact wave functions.

FIG. 2. Radial 1s wave functionsP1ssrd of hydrogenlike atoms
computed withL=8. Note the logarithmic scale forr.
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I. Basis change matricesL1\0 and L0\1

The matricesL1→0 andL0→1 occur only in products with
other matrices. This kind of matrix products is computed by
removing the row or the column corresponding to basis func-
tion w0

kmin or inserting a zero row or a zero column corre-
sponding to that basis function.

J. Evaluation of scalar products

When normalizing wave functions or evaluating the ex-
pectation values of operators we encounter integrals of the
type

I =E
0

`

fsrdgsrddr s124d

or

I =E
0

`

fsrdsÂgdsrddr. s125d

We first compute the expansionscid of the product function

hsrd= fsrdsÂgdsrd in the scaling function basisBs (as in the
case of a product function). The integral is then given by

I =
1

2kmax+1o
iù0

ci . s126d

See also Refs.[24] and [25].

K. Negative values ofr

A negativer coordinate has no physical meaning for ra-
dial wave functions. However, interpolating wavelets consti-
tute a basis set for functions spaceL2sRd and their domain is
the whole real axis. Interpolating wavelets and scaling func-
tions that are located near zero(i.e., nonzero values of the
functions are concentrated near zero) do not generally vanish
on the negative real axis, so we are not able to exclude the
negative real axis by choosing a suitable basis set. We choose
the basis set so that it is symmetrical around zero, so that for
each basis functionzsxd the functionzs−xd is also in the basis
set; see Eqs.(58) and(59). We actually solve the eigenprob-
lem in both the positive and negative real axies, i.e., ifPsrd,
r PR, is a solution of the eigenproblem then bothPsrd, r
ù0, andPs−rd, r ù0, are wave functions. We may generally
get either odd or even solutions to the eigenproblem, i.e.,
Psrd=Ps−rd or Psrd=−Ps−rd. For hydrogenic computations
we simply neglect the negativer part of the wave function
but the situation is more complex when HF equations are
solved. The operators used in HF computation yield either

FIG. 3. The 1s eigenvalues of hydrogenlike atoms withZ=1, 2,
10, 50, and 100. Ratio of the computed and exact values is shown.

FIG. 4. Expectation values of the kinetic energy and potential
energy operators for the hydrogen 1s orbital. Ratio of the computed
and exact values is shown.

FIG. 5. Energy eigenvalues of 2s, 2p, 3s, 3p, 3d, and 4f orbitals
of hydrogen withB=15, 20, 30, 30, 30, and 45, respectively. Ratio
of the computed and exact values is shown.

FIG. 6. Relative error of the hydrogen 1s orbital eigenvalue;
unit of lengthu=0.6.
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odd or even functions. The parity of the functionÂP depends
on the parity of the functionP and in the case of the direct
integral and exchange integral operators also the parities of
the wave functions from the previous iteration that are used
to compute these operators themselves. Table I shows how
the operators needed in HF computations affect the parities
of the functions. The functions yielded by the exchange in-
tegral operator and the other operators would have different
parities if we chose a wave function with parity different
from the output wave functions of the previous iteration(sec-
ond and third lines of the table). Consequently, the compu-
tation would be wrong on the negative real axis(the ex-
change integrals would have the wrong sign). We have to use
either odd or even wave functions during the whole HF it-
eration. We have chosen to use odd wave functions, which
have continuous first derivatives at the origin.

VII. NUMERICAL RESULTS

A. General

We use eighth-order interpolating wavelets for numerical
results. The unit of length is the atomic unit unless otherwise
stated. We examine the convergence of the essential physical
quantities toward the known exact or accurate values when
the number of resolution levels in increased. We also exam-
ine the effect of the number of basis functions in each reso-

lution level. Various parameters affecting the computations
are also reported.

The basis sets were formed so that there areS type basis
functionsw−2B

kmin, . . . ,w2B
kmin in resolution levelkmin andD type

basis functions c−B
k , . . . ,cB−1

k for k=kmin, . . . ,kmin+L−2.
HereL is the number of resolution levels andB is a param-
eter describing the number of basis functions in each resolu-
tion level. We countSkmin

andDkmin
as two separate resolution

levels. The total number of basis functions is

N = 4B + 2sL − 1dB = 2BsL + 1d. s127d

In principle, the number of resolution levelsL determines the
maximum possible accuracy of the computations with fixed
kmin and unit of lengthu.

B. Hydrogenlike orbitals

We solved the 1s orbitals for hydrogenlike atoms for
atomic numbersZ=1, 2, 10, 50, and 100 using the basis sets
and length unitsu given in Table II. The basis sets were
chosen large enough to cover the relevant radial range of the
wave functions. The resulting 1s radial wave functions are
shown in Figs. 1 and 2. There is no visible deviation of these
wave functions(computed withL=8) from the correspond-
ing exact wave functions. Convergence of the eigenvalues
«n, as a function of resolution level is presented in Fig. 3.
The exact values are

FIG. 7. Relative error of the hydrogen 1s orbital eigenvalue;
unit of lengthu=1.0.

FIG. 8. Relative error of the hydrogen 1s orbital eigenvalue;
unit of lengthu=1.4.

FIG. 9. Relative error of the hydrogen 2p orbital eigenvalue;
unit of lengthu=1.0.

FIG. 10. Relative error of the hydrogen 3s orbital eigenvalue;
unit of lengthu=1.0.
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«n, = −
Z2

2n2 . s128d

We see that accuracy within 1% is achieved already atL=4.
Expectation values of the kinetic energy and potential energy

operatorsT̂ and V̂ for the hydrogen 1s orbital sZ=1d are
shown in Fig. 4. The most accuratesL=9d numerical values

are «1s=−0.499 996,kT̂l1s=0.499 98, andkV̂l1s=−0.999 98,
the exact values forZ=1 being −1/2, 1/2, and −1, respec-
tively. Other orbitals of the hydrogen atom(2s, 2p, 3s, 3p,
3d, and 4f) were also calculated. We used a unit of length
u=1.0 and minimum resolution levelkmin=0. The resulting
orbital eigenvalues are shown in Fig. 5. Accuracy better than
1% is achieved atL=4 for all the computed orbitals. As the
orbital quantum number, increases the results get more ac-
curate.

We also made a set of computations for hydrogen 1s, 2p,
and 3s orbitals where both the number of resolution levelsL
and basis widthB were varied. The hydrogen 1s orbital was
computed with unit of lengthu=0.6, 1.0, and 1.4, and the
other orbitals with unit of lengthu=1.0. We usedkmin=0 in
these computations. The relative error of the hydrogen 1s
eigenvalue(compared to the exact analytical result) is plot-
ted as a contour plot in Figs. 6, 7 and 8, where the length
unitsu are 0.6, 1.0, and 1.4, respectively. Similar plots for 2p

and 3s are presented in Figs. 9 and 10. The relative error is
computed byD=sx−x0d /x0 wherex is the computed quantity
and x0 its exact value. For each orbital, the Schrödinger
equation was solved using all combinations withL
=Lmin,Lmin+1, . . . ,Lmax and B=Bmin,Bmin+1, . . . ,Bmax to
cover the ranges ofL andB.

Note that for fixedL the limiting value for the orbital
eigenvalue asB tends to infinity is not the(physically) exact
value but one with aL dependent shift. Therefore, the 0%
contour appears in Figs. 7, 8, and 9.

C. Hartree-Fock results for many-electron atoms

We carried out HF calculations for helium, lithium, beryl-
lium, neon, sodium, magnesium, and argon atoms. Lithium
and sodium are open-shell and the others are closed-shell
atoms. The relevant computation parameters are given in
Table III. The basis sets were formed the same way as for the
hydrogen atom. The same value of the weight parameterai
defined by Eq.(78) is used for all orbitals,ai =a. The unit of
length wasu=1 in all HF calculations. A matrix one-norm

TABLE III. Parameters for HF computations.

Atom a kmin B L

He 1.0 1 10 2,…,8

Li 1.0 1 20 2,…,8

Be 1.0 1 15 2,…,8

Ne 0.6 1 10 2,…,8

Na 0.7 1 20 2,…,7

Mg 0.7 1 20 2,…,7

Ar 0.7 2 25 2,…,7

TABLE IV. Results from Hartree-Fock calculations for helium, beryllium, neon, magnesium, and argon.
Deviation from the accurate value[26] is given in parentheses so that negative deviation means that the
computed value is less than the accurate value.

He Be Ne Mg Ar

E −2.861 57s11d −14.571s3d −128.45s10d −198.8s9d −525.8s11d
niter 21 23 31 27 25

«1s 0.917 93s3d −4.7318s9d −32.73s5d −48.7s4d −118.2s5d
«2s −0.309 25s2d −1.928s3d −3.75s2d −12.29s4d
«2p −0.850s−4d −2.287s−5d −9.577s−6d
«3s −0.2525s6d −1.274s4d
«3p −0.5916s−6d

k1su2sl −2.6310−7 −4.2310−6 −5.6310−8 −1.8310−8

k1su3sl −1.6310−8 −7.8310−9

k2su3sl −8.9310−8 −2.5310−8

k2pu3pl −1.4310−8

TABLE V. Results from Hartree-Fock calculations for lithium
and sodium. Deviation from the accurate value[26] is given in
parentheses so that negative deviation means that the computed
value is less than the accurate value.

Li Na

E −7.4321s7d −161.3s6d
niter 17 27

«1s −2.4775s3d −40.2s3d
«2s −0.196 309s14d −2.78s2d
«2p −1.521s−3d
«3s −0.1817s5d

k1su2sl −5.7310−4 −5.9310−8

k1su3sl −1.4310−6

k2su3sl −2.8310−4
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was used to compute the quantitiesz defined by Eq.(79).
The value of the precision parameterz0 was 10−10 in all HF
computations.

The orbital eigenvalues and total energies from the most
accurate computation for each atom are given in Tables IV
and V. These values are compared with the values from stan-
dard HF calculations obtained from Ref.[26]. Total energies
of atoms are plotted in Figs. 11 and 12. For helium, four
resolution levels are needed to reach an accuracy of 1% with
kmin=1. For argon, six resolution levels are needed for this
with kmin=2. The HF calculations converged in 16 to 31
steps depending on the number of resolution levelsL and
weight parametera.

The effect of neglecting nondiagonal Lagrange multipliers
can be seen from the overlap integrals between orbitals. For
the open-shell atoms(lithium and sodium) the largest overlap
integral is of the order of magnitude 10−4 whereas for the
closed-shell atoms all the overlap integrals are of the order of
magnitude 10−6 or smaller.

VIII. CONCLUSIONS

We have demonstrated that interpolating wavelets can be
successfully used to solve the atomic orbitals and the elec-
tronic structure of atoms. We are able to systematically in-
crease the accuracy of the calculations by choosing the num-
ber of resolution levels and the number of basis functions in
each level.

In this study we have concentrated on the basic formalism
and developed it down to practical computations. Our study

involves both development of algorithms, e.g., for conver-
sion of matrices from nonstandard operator form to standard
operator form, and testing with calculations. We have shown
how to consider the singularity of the nuclear Coulomb po-
tential and the centrifugal potential as well as the Slater in-
tegrals in evaluation of Hamiltonian and Fock matrix ele-
ments(see also Ref.[16]).

We have tested numerically the computation methods for
the ground state of the hydrogen atom and hydrogenlike at-
oms, for excited states of hydrogen, and for some many-
electron atoms. The numerical results converge to the accu-
rate or reference values as the number of resolution levels
increases. In principle, we should be able to make the error
arising from the wavelet approximation arbitrarily small by
enlarging the basis function set. Our numerical HF results
support this. With a large number of resolution levels(about
eight-or more) the computation time grows considerably. De-
pending on the properties of the algorithms we can use basis
sets with fewer resolution levels(possibly only one), higher
minimum resolution, and more basis functions in each level.
However, the possibility of using several resolution levels is
one important benefit of wavelets. It might also be possible
to optimize the computation by using convolutions in the
computation of backward and forward wavelet transforms
and products of operators with vectors instead of simply us-
ing matrix products as done in this study.

A noticeable feature in our development for the Hartree-
Fock formalism is that all relevant operators, including those
representing the two-electron integrals, can be evaluated ana-
lytically.
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