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Solution of atomic orbitals in an interpolating wavelet basis
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The Schrddinger equation of hydrogenic atoms and the Hartree-Fock equations of some many-electron
atoms are solved using interpolating wavelets as basis functions. The nonstandard operator form is used to
compute operators in basis sets including multiple resolution levels. We introduce an algorithm for converting
matrices from nonstandard operator form to standard operator form. We also consider the different components
of the Hamiltonian and Fock operators separately and derive analytic formulas for their evaluation. Extension
to many-electron atoms is done within the Hartree-Fock formalism. Convergence of atomic parameters such as
orbital eigenvalues with respect to the number of resolution levels is inspected numerically for hydrogenlike
atoms(ions) and some light many-electron atorgigelium, lithium, beryllium, neon, sodium, magnesium, and

argon.
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[. INTRODUCTION wavelets to solve the Coulomb problem. Wavelet methods
are closely connected to point-grid based methods that also

Use of wavelets for solving differential equations and par- . ; . )
L ; X : . . eneralize to higher than one dimensidrB,14. Lippert et
tial differential equations in physics has recently been mves9 9 4. Lipp

. . . ; -7 7l [12] have used interpolating wavelets in point-grid based
ggf\l/tiid 't?];hgclgfggit#rg_es]u;%i %?rgculljaarn?fg“?:g;?aﬁc rpethods. Mann has done Hartree-Fock calculations using
9 9 q q %oint sets with logarithmic scalinfll5]. The basis function

?rﬁsrig]scl:wsiIﬁgv\évi\éilgtéaalljsbebjr;c’ilessf\lijvg?/tel{clg]éqT(I)sggle\z/re?t?g b ets that we have used, where the accuracy is increased by
’ adding basis functions of finer resolution levels near the

Schrodinger equation of hydragenlike atorfH] gnd thgy nucleus, resemble this kind of point grid. In our treatment of

have also analyzed the Hartre_e—Fock method W'th. contln_uout?]e HF method matrices of all the necessary operators are

}/\r/gvals:t:gaer_llszl;o&r(rf_% Ezgg}dnlgnsgryg%?e; alr(l::\llztlglr; Z Vggre]ncomputed and calculations are implemented as matrix and
vector operations. We are able to derive analytic formulas for

done by Yamaguchi and Mukoyanpil]. tpe matrix elements. We handle the various singularities in a
Most authors have used compactly supported orthonorm%imilar way as Johnsoet al. [16]

x:xg:g:: :gveelEgggnhcsesénécwéiczﬂrcu;ﬁzongrgsggge;hr;'es Representation of operators in orthonormal wavelet bases
y has been studied, for example, by Beylkinal. [17-19. We

:lllnudkgly\/lglmir[]g] %ngl]\}le'\:(ﬁ);r hﬁ?‘ﬁ;‘\a’tj’letg J;négu;ihES?nd introduce an algorithr_n to compute the s_tandard operator
Orthonormal ’wavelet families provide several . usefulform (SOB of an arbitrary operator from its nonstandard
properties—they possess recursive refinement relafidjs operator f_orm(NSOF). The nonstandqrd c_)perat_or form de-
and they lead to fast discrete wavelet transform for muIti—COUpIes dlfferen_t resolution levels, which is an important as-
resolution analysis pect for numerical apprpaches. We ch_ose to use standard
Interpolating Wa;/elets are a biorthogonal wavelet family operator form because I enables the d_lrect use of stan dard
‘matrix and vector algorithmsge.g., solution of the matrix

Theylatre nOtb?n (_)rthlonormal kt:Jat.3|s b%f(R)' tlpterlpolatlr;g igenproblem However, for large basis sets and several
wavelels enable simpie computation o matrix €lements anflyqy tion levels the SOF computations become slow and

expa_nsion of functions in a b_asis fun(_:tion set because of thf‘aking advantage of the special structure of NSOF matrices
special form of the dual scaling functions and dual wavelet§ﬂight make the computations significantly faster

[8,12. Since the dual scaling functions and dual wavelets are In the next section we first present the relevant concepts

sums of & functions the. integrals invoI\./ing.these_ functions of hydrogenlike atoms. Then the Hartree-Fock formalism for

usyally require evaluating some function in a finite S.Et Ofmany—electron atoms is briefly summarized. We present de-

points. Goedecker and Ivandv] have used interpolating tails of the basis set in Sec. Ill and the formulation of HF
equations using interpolating wavelets in Sec. IV. The struc-
ture of matrices in standard and nonstandard operator form is

*Corresponding author. presented in Sec. 18,17,19. Section VI discusses details of
Electronic address: tommi.hoynalanmaa@iki.fi the computation of various operators and some other compu-
"Electronic address: tapio.rantala@tut.fi tational aspects. We give some numerical results in Sec. VI

*Electronic address: keijo.ruotsalainen@oulu.fi and conclusions are presented in the last section.
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We use atomic unit§20,21 throughout this articlg(e Ci:(ci@))g‘:l_ 9
=m=fh=4mey=1). We use the symboA to denote a matrix

of an arbitrary linear operatdk in the given basis. The vec- The functions{y(r) are so called dual basis functiogsee

tor space spanned by the basis functionSet denoted by ~ Sec. ll). Equationg7) and(8) are consequences of the bior-
L(S). thogonality relation§26)—(29). Diagonalization of the eigen-

problem(7) for each orbitali yields N eigenvectors

Il. SCHRODINGER EQUATIONS OF ATOMS
¢ =(c”)pey (10)

A. Schrédinger equation of a hydrogenlike atom
i and the corresponding eigenvalues as a solution. We
Due to the spherical symmetry of atoms the three-pgage the eigenvalue of eigenvectors so that the wave
dimensional one-electron Schrodinger equatid=si of  function corresponding to the eigenvector has-¢;—1
hydrogenlike atoms is separated into a one-dimensional ranodes and satisfies the boundary conditions at zero and in-
dial part and a two-dimensional angular part. The exact sofinity. Note that all functionsP,,,(r) vanish at both limits. If
lutions to the latter are spherical harmoniGs, wheref and  we change the unit system so that the new unit of length is
m, are the orbital quantum numbeangular momentum atomic units of length and the energy is not changed, the
quantum numberand orbital magnetic quantum numbers, Schrodinger equatio(il) of the hydrogen atom becomes
respectively. WritingR,, for the radial wave function, the

hydrogenlike orbitals areynm, (I, 6, #)=Ru(r)Ym (6, 4), (_ 11d_2_3§+y(€+1)>P (1) =8P (1)
where n is the principal quantum number. The radial 2uv2dr> ur  uw? 2r? Nt = EncTnd
Schradinger equation for a hydrogenlike atom is (11)
1d?> z ¢(+1) . _
T odr2 ¢ + T2 Pre(r) = enePne(r), (1) and _the HamiltoniarH and its components are changed ac-
cording to Eq.(11).
whereZ is the atomic number,, are the orbital energies,
and P (r)=rR,(r) are the radial wave functions multiplied B. Hartree-Fock equations
by r. The functionsP,,(r) are called wave functions too. In .
general, the radial wave functid®,, hasn—¢-1 nodeg22]. The Schrddinger equatiod ¥V =EW of a many-electron

atom leads to Hartree-Fock equations in the central field ap-
proximation and with Slater determinant wave functions

A =-”|—+\”/+é€, 2) [20—22. The Slater integr_als between the two radial wave

functionsP; and P; are defined as

The HamiltonianH consists of three parts as

where
:I_:_}d_z 3) Yii(r) =f Pir")y*(r,r)P;(r")dr’, (12
2dr?’ 0
where
~  Z
yrr')=—o1, (13
>
A+
C="%m ® = minfr,r"}, (14
With a finite basis function se{tgp(r)}gzl the approximate _ ,
solutionsP; of Eq. (1) can be expanded as r-=maxr,r'}. (15
N The HF equation for the orbitalP; with the principal
P=> Ci(p)Cp- (6) quantum numben; and orbital quantum numbeft is
p=1

1d2 Z ¢+1
( 2dr2_?+ (2r: )+Di(r))Pi(r)

Q

Hec=ec, () =P+ X W; ¢, Py(r) + Ei(r),  (16)
(=1

In case a finite biorthogonal wavelet basis set is used Bq.
is represented as a matrix eigenproblem

whereH is given by
o where
H= (Hpq)?,‘,qzﬁf Cp(NHE(r)dr (8) 9
R
Di(r) =2, (w; - tsij)Y,Qj(r) = (w; = DA(N), 17
j=1

and
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Q m
E(= 2 wB;(nPir), (18) WX = 2 gie(2x-j), (31
j(#)=1 j=—m
and m
26,+1 (ei p ei)z B0 = 2 hgx-j), (32
(1) = “(r), 19 i
Ai(r) 4€i+1§0 00 0 (r) (19
m
1w (b & €\ . W)= D Ga2x—j). 33
The basis functions defined by Eq®6)<29) satisfy the
Z is the atomic number, (22) biorthogonality relations
Q is the number of orbitals, (22) f P ek (x)dx= 8, (34)
w; is the number of electrons in orbital (23 .
W f P 0el(dx=0, k=g, (35)
l 2 3 - - - —00
the W 3 bol. 24
<m1 m, m3> is the Wigner 3} symbo (24)
The wave function$;(r) are normalized with the condition f J(x)cpq(x)dx 0, k=q, (36)
J [Pi(r)]2dr=1. (25) .
° f PP AX= 88 (37)

The nondiagonal Lagrange multipliess, i # j, that en-
sure orthogonality of the orbitals may be neglected for
closed-shell atoms. We neglect the nondiagonal Lagrange
multipliers for open-shell atoms, too, and the exact orthogo- B. Construction of the basis function set

nality of atomic orbitals is not preserved for them. To preserve the orthogonality relations of the basis func-

ll. INTERPOLATING WAVELETS AS BASIS SET tions the scaling functions and wavelets in the basis cannot
_ N be chosen arbitrarily The basis &t{{;, ... ,{\} consists of
A. Biorthogonal wavelet families scaling functionsg! of resolution levek= krnln and wavelets

For a more detailed description of the biorthogonal wave of resolution levelk=Kupin, - - . Kmax The dual basis func-
let families and interpolating wavelets, see R@]. A bior-  tions are defined by

thogonal wavelet family of degrem is characterized by four ~K
. -~ ~ . ~ (Pi If g] (P| )
filters h;, g;, h;, andg;. The degream is chosen to be even =1~ (38)
and large enough so that all the nonzero elements of the z/fik if &= lﬁf
filters are included by the indices=—m, ... ,m. The two- . : .
index basis functions are Different resolution levels of the basis are denotecﬁas
Dy .+--- Dk, WhereS means a set consisting of scallng
cp!‘(x) = (2% -1i), (26) functlons andD a set consisting of wavelets. This kind of
basis is used directly for the standard operator form. For the
) = (2% 1), (27)  nonstandard operator forn§ parts with indicesk=kpy;,

+1,... knax @re inserted in the basis. We defiNgto be the
number of basis functions i§, and My to be the number of

~k — ok ok H
%X = 252X 1), (28) basis functions irD,. For S= {(pI yen ,<p, } we defineuy,
T = 292, 29 ., and forD,= {gl),‘ - ¢k }We defmevka - The NSOF
_ . o o basis function seBNSOF—{gl,.. Lnysod CONsists of parts
The indexk is called the scaling index and the indethe Sc.. Dk .-, .Dg . The basis functions in the parts
translation index. - S Dy ,....D,_ are the same as in the corresponding
The functionse, ¢, §, andy satisfy the following refine-  parts of the basis seéB. The basis functions in the parts
ment relations: S +1 - S are chosen so thdt(S., D) CL(Swy). The
m radial wave function we want to expand should be zero at the
(X)) = > hie(2x =), (30) nucleus. We exclude the functiapﬁmin from the basis in or-
j=—m der to force the wave functiorid,, to be zero at=0. This
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also makes the matrix of operatBy defined by The forward wavelet transform defined by E¢43) and
(44) can be written in matrix form as

(RA)(r) = [r|f(r), (39)

nonsingular(an empirical observation See also Ref[16]
for the handling of singularities. The projection of an arbi- -
trary functionf in L4(R) to the space spanned by a finite wik-D :ZgKk-lv“‘), (48)
number of basis functions is

p D = Eg:‘lv(k), (47)

where
k) K Kmax " B B
f(x) = 2 o} T p{IN(X) + k:%m EI wikmelyK(x).  (40) 281 = (N 2, TR, (49)
In this article, a vector consisting of coefficients §fbasis k-1 = G My-1.Nj (50)
functions is denoted by®¥ and a vector consisting of coef- S i g2e1.0) @=1 =1
ficients of Dy basis functions byv). The backward wavelet transform defined by E¢4$) and

We use a similar basis set, denoteddyor Hartree-Fock (46 can be similarly written in matrix form as
calculations. The scaling functiog™n is excluded fromB
due to the boundary conditions of wave functions at zero and o = B%*lv(k) + BSKkﬂW(k), (51)
singularities of the potential, the centrifugal potential, and
the functions 1¢<*! (occurring in Slater integrajsat r=0.  Where[8]

However, _since the I(Sl_atgr integrals c_io not generally \k/a_mish at BS¢1= (2% )T (52)
r=0 we include gfmn in the basis setBy=BU{¢gm} & +1
={{?, ... ,gﬁ?}. The basis change matrix frof to By, is s, b, 1
denoted by, ., and the basis change matrix froBg to B BDI<+1: (ZSKku) ’ (53
tgy Lo.1. We do not need to compute the matrix of operator,
R_; (corresponding to division bg) in basisB,. We also use
the basis set z& = (hﬂkﬂﬁ—zﬂkﬂ)gi{‘, RET (54)
Bs={grma*|i e | 41
s={¢i | st (41) Zg:ﬂ:(ngﬂ’B—ZVk’a)’c\zA:k’l,?‘[I?(;ll' (55)

consisting of scaling functions of resolution levie},,+1
wherekpqy is the maximum resolution level in basBsand We use the symbolg and Z for the forward wavelet

IsCZ is finite. The basis seB; is cc_)nstructed SO that transform instead of andF (as in Ref[8]) to avoid confu-
L(B)CL(By and L(By) CL(By). Expansion of an arbitrary ;o with the Fock operatdf.

function f in the scaling function basiB; is given by

f(r) = 2 aylma™(r). (42)

ielg

D. Interpolating wavelets

Interpolating wavelets are one biorthogonal wavelet fam-
ily [8,12. For an interpolating wavelet family of degree
the mother scaling functiow is constructed by recursively

] ) ~applying polynomial interpolation of degree—1 to datas
The forward wavelet transform is defined by the equations- s "and the mother dual scaling function is

(8]

C. Forward and backward wavelet transforms

m @(x) = 8(x), (56)
§t=2 ﬁj 21 1 (43)  whered is the Dirac delta function. For interpolating wave-
j=-m lets the coefficients; satisfy
m hj=¢(j/2), j=-m,....m. (57)

k-1 _ ~
d _.E gl's}(+2i’ (44) The following symmetry equations hold for interpolating

scaling functions and wavelets:
wheres‘ is the coefficient for the basis functiasf anddY is

the coefficient for the basis functiaff. The backward wave- ¢ = @5(=x), (58)
let transform is defined by the equatioj8j
w2 Y00 = gk (=). (59)
Sit= 2 (hys+ 00, (45)

j=—m2 IV. SOLVING HARTREE-FOCK EQUATIONS
m2 For an arbitrary operato&, we denote the matrix ok in
= D (NS +gyadl)). (46)  basisB by A and the matrix in basi8, by A©. We define

j=-m2 some operators to be used:
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(RA() =r[f(r), (60) (KFP)(1) = Y§(N)Py(r). (73
A _ Note that in the definition of operat&‘-‘ the argument of the
(RaH)(r) = f(r)/|r], (61 gperator occurs only in the Slater integhl(r). This opera-
il tor is linear, though. For matrices of direct Slater integral
Oo)(r) :f f(r')dr’, (62)  Operators we have
° J=Lo aMOSI(Pi* P))Ls o (74)
~ o and for matrices of exchange integral operators
U.f)(r)= [ f(r")dr’, 63 «
(UD0=j 1 3 KE=Lo MOPYSOMOPIL, o, (75
o where
S. = RTMoR* + RU..R Y, (64)

S9=1, R Wlo1+U%L, Ry, (76

wherek e 7, k=0, andA"f=A---Af whereA is appliedn and
times. Letf e LAR). We define the multiplication operator 0 e —_— o
M(f)=A by setting S =Ly o(RY*MUR gy + (RO)UDL;_o(RHg s

(7

(Ag)(r) = f(r)g(r) 65 for c>0.

for an arbitrary functiorg € L(R). If f is a vector(function) The HF equations are solved by an iterative procedure.
in a wavelet basi8’ we define the matriM(f) to be the We use the standard procedure giveifidé] modified for the

matrix of 0peratorl\7|(f) in the basisB’ (f is kept constant matrix form of the HF equations presented in this sec_tion.
Let f and g be arbitrary vectorgfunctiong in the wavelet ;I_'he fcillovytlrr:g !ntp;]ut par_arr:]tetersf?rg nteed_efi 1for the HF itera-
basisB’. We definef xg to be the projection of the function lon algon m € weight coetlicients;, 1=21, Q [see
h(r)=f(r)g(r) to L(B"). formula (78)]; the precision parameter characterizing the

We omit the nondiagonal Lagrange multipliers and Eqs.deslred accuracy of the solutigsee formulag79) and(80);

; o . and the type of matrix norifi||, used to test the convergence
(16) can be written as matrix eigenvalue equatip?3] of the iteration[see formula79)].

F.ci = g, (66) The algorithm for HF iteration is as follows.
(1) Compute the Fock matricds for each orbitali with

where the Fock operatd¥; for orbital i is defined by formula (67). We setd=0 andK;=0 in the first step, i.e.,

Fi=H+J - K,. (67)  hydrogenic wave functions are used as the first trial wave
) ) functions.
The wave function® are given by (2) Solve the matrix eigenvalue equatio(®6) for each
N orbitali. Each eigenvalue equation yielNssolutions, where
P.=> Ci<P>§p_ (69) N is the number of basis functions. We choose the solution
p=1 satisfying the following conditions: the wave function is odd

with respect to inversionP;(r)=-P;(-r); the wave function
hasn,—¢;—1 nodes, wher@, and ¢; are the principal quan-
HO=T+V+C,, (69)  tum number and orbital quantum number of the orbital
' and, we choose the solution with lowest possible eigenvalue
where the components are defined as in the case of hydre; among the solutions satisfying the other two conditions.
genlike atoms, Eq¥3)~(5). Normalize the wavefunctions with E¢R5). Let ¢, be the
The Slater direct integral operator is defined by eigenvalue and®" the normalized wavefunction for each
20 +1 ¢ o 0\2 orbitali. We need not explicitly test the boundary conditions
i > ( ! ') K of wave functions at zero and infinity in the method de-
46+ 1,2 scribed in this article.
(70) (3) Let PP be the old output wave functions from the
previous iteration. Compute the new output wave functions
where as normalized linear combinations of the new wave functions
and the old output wave functions as

Pi = Ci[ai Pinew+ (1 - ai)Pipre\l], | = l, - ,Q. (78)

The normalization coefficient€; are determined by EQq.

The single-electron Hamiltonian operator is defined as

i

q
3= (w=8)F-(w - 1)
I et J 7% [ 0O 0O

(JFP)(r) = YE(NP;(r) (71)

and the Slater exchange integral operator by

-1 i Kk € ZAK (25). According to Ref.[22] the values ofq; are usually
Ki= 2 Z_ sz 00 O KJ (72) about 0.5 but they may be anywhere from 0.05 to 1.1.
D=L« (4) Compute the matriced andK: for all the necessary
where combinations ofi, j, and k. Use the wave functions com-
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puted in step 3. Compute the matricksand K; with Egs. o0 A
(70) and(72), substituting matrices in the place of operators. Ak k‘f s DAL, ()X a=1, ... My,
(5) Compute the quantity

2= (79 B=1,... My, (86)

wherek=Kuin+1, ... Knax

We introduce an algorithm for converting a matrix from
NSOF to SOF. The NSOF blocks S, SDy DyS. and
z2<z (80) DDy) are computed on the fly. The algorithm is as follows.

ut
we have obtained self-consistent solutions for the HF equa- Thpe NSOF basi&= (S<

tions and the iteration is stopped.

(6) Return to step 1.

Finally, we evaluate the total energy of the atom with the
self-consistent solutions for the wave functiddsand ener-

where FP"®" are the Fock operators from the previous itera-
tion. If

Kt -+ 10 Dk )

The functionM that calculates the NSOF matrix elements
according to formulag83)—(86).

Output Matrix in standard operator form.

: f he f | Algorithm
glese; from the formula (1) If the basis contains only pai®s  andDy the SOF
§ EQ: matrix is
E=2, wse — wi(P;|J; = Ki|Py), (81)
i=1 ah | 1 _ A%ln%ln A%mkamln (87)
- A kmmS(mln Akainkain '

wherew; are the occupation numbers.

where the blocks are computed with formu(&8)—86).
V. STANDARD OPERATOR FORM AND NONSTANDARD

Else
OPERATOR FORM (2) Compute matrixA, e, by calling the algorithm recur-
The eigenvalue equations are solved using the standagively with basisBpe,=(Sc Dy ..., S _-1.Dk _-1)-
operator form, which represents the operator in the chosen (3) ComputeAmaLknax Wlth function M according to for-
basis. The elements of matrof an operatoR in the SOF ~ Mula(84). 5 _ _ _
are defined by (4) ComputeAPk..Sqa with function M according to for-
mula (85).
RN (5) ComputeAPkm.LPkma with function M according to for-
Aj =f GOOAL (X)dx, 82 mula(se).

- (6) Calculate matricesA%mn ke and APaPk.., where q
where ¢, j=1,... N, are the basis functions and, i ~Kmin - ,kmDax—l by applying forward wavelet transforms to
=1,... N, are the dual basis functions defined by E3§). ~ Matrix A% ke using the formulas

The standard operator form of an operator can be obtained ~ =S .
from the matrix elements in nonstandard operator form. The A = Zzznﬂzz:”; Zima: ZZSK""” AN

nonstandard operator form decouples different resolution

levels in the basis set and makes derivation of explicit for- (88)
mulas for the matrix elements eas[&;17,19. The nonzero =5 =5

-~ D + ~ ~ D
blocks of nonstandard operator fornof the operator are APk qu 1Z§3+; $Z et *Z e Ak, (89)

max 'max

defined by
(7) Calculate matricesAPknamin and APknPa where q

S S — - ~Kinin A Kemin =Kmins - - - Kmax—1 by applying backward wavelet transforms
A min = f 3 Cupn WAg (X)dx

B ’ to matrix APkna ke Using the formulas
= = D = AP kaax S"<ma><_1 e s(mln"'2 S(mln
a=1, ... N, B=1,... N, (83 APk Sénin = Al kmaﬁ«mastKmax_lB - BSW Bsxmm
and (90)
AﬁkﬁDk:J_ (’Dﬂk (X)A,pk (x)dx a=1,... N, AkaaxDq:AkaaxsKmaxB:kkmax_lB;max:;...ngiiBgcgrl_ (91)
(8) Construct the resulA from matrices calculated in
B=1,... My, (84)  steps 2, 5, 6, and 7 using the formulas
AS(mln kmax
A= J LOOAGE (0dx a=1, .. My, APk, Dk
Aver= : : (92
,8 = 1, cas ,Nk, (85) Akaax_lemax
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AkaaxS'(min
Akaakamin
Ahoriz = . ! (93)
Akaakamax_l
A
A= ( prev DAVEI;t ) ) (94)
Ahoriz A" KnaxKimax

VI. EVALUATION OF MATRIX ELEMENTS AND OTHER
COMPUTATIONAL ASPECTS

A. Notation

We use the following notation for matrix elements of an
operatorA in nonstandard operator forfi7]:

aff = f BOOAGEdx, (95)
B = f PEOAR(X)dx, (96)
%= j FO0AY 9, (97)
5= f FO0AGdx. (98)

In this section we denote the matrix of an opera?hoim an
arbitrary wavelet basiB (with or without the functiorxp'{,mi")
by A.

B. Differentiation operator
The basic integral for a differentiation operati/ dx” is
defined as

dP

&= f: Px) pe(x—idx. (99

The matrix elements of operatdf/dxP in nonstandard op-
erator form in an interpolating wavelet family are

m

a:(i =-2kp 3 0,8j-2i+1-1» (100
v=—m
m m
B:ﬁ AP [ B R-VP (101
r=—-m pu=-m
¥ == 2% Pay .y, (102
5j = 2% (103

See Ref][8].

PHYSICAL REVIEW E 70, 066701(2004)

C. Function operator

By a function operator we mean multiplication by a given
functionf as defined by Eq65). The NSOF matrix elements
of a function operator in the interpolating wavelet basis are

2i+1
aﬁ:f(w)(sﬂ, (104
] 2i+1
ﬂ:j = h2i—2j+1|:f<?> - f( 2k+1 )] , (105)
¥ =0, (106)
i

ﬁ:f(2—k>5,,-. (107

D. Operator R

The operatontfz is a function operator with

(Ro)(r) = r|g(r). (108

Its NSOF matrix elements are obtained from formulas
(104—(107) where we sef(r)=|r|. If the basis does not con-
tain the functiongl™n the matrixR does not become singular
and we can computB! as an inverse matrix.

We obtain the potential energy operator as

v=-R1 (109
and the centrifugal potential operator as
e+1
C,= %(R‘l)z. (110

E. Operator U,

The matrix elements of operatdfto in the nonstandard
operator form are

af == 2791 Y G020 + 1] - 2) - 1) - D(- 2j - D)],

(111
=242 @{@(‘z';” —j)—cb(—j)] (112

Y == 2 D2l -2j - 1) -d(-2j - 1], (113

s =2Md(fi| - ) - D= )], (114

where ®(x) is the integral function of the mother scaling
function ¢(x). We evaluated the functio® with numerical
integration using the fourth-order Runge-Kutta method. The
function ® can also be calculated analytically using the re-
finement equatiori30). When the distance between adjacent
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TABLE I. Effects of operators on the parities of functiofis” 20 T
means odd and “e” means eyen i R‘s(r) .........
\ 1s'
Phe PP TR, VP,, GC/P JneP Kn ¢ P, 15 1
ni¢; ey ni¢; ni¢; e, ni¢;m e ¢
0 o o o o o o 10kt |
o e o} o] 0 o e i
e 0 e e e e o
e e e e e e e
points in numerical integration is 2the maximum deviation 0 1 2 3 4 /5 6 7 8 9 1
of the numerical result from the analytical one is of the order 4

i 1
of magnitude 10 FIG. 1. Computed 4radial wave function®4(r) andR4(r) of

- the hydrogen atom with=8. There is no visible deviation from the
F. Operator U., exact wave functions.

The matrix elements o)., in the nonstandard operator
form are f(

i

m F_) = a(2kma><_k)i . (120)

af == 2% 3 G[d() - (|20 + v - 2) - 1)],
v=—m

(115 H. Product function fxg

The product functiorf xg is defined in Sec. IV. The vec-
torsf andg in the arbitrary wavelet basB are converted to
- j) , (116 the scaling function basiB,, whereL(B) C L(By), so that we

=2 X gy{q)(oo)_q)q o

2 have
W= -2 D) - bl -2~ D], (117 0= 3 agh=() (121
s = 27 [®() - (|i| - })]. (118  and
G. Multiplication operator g(r) = 2 bigim(r). (122

The multiplication operatd\?/l(f) is defined in Sec. IV. Let
f be a vector(function) in an arbitrary wavelet basiB. We
first convert the vectof in basisB to a scaling function basis
B, using formula(42). Here B, is defined according to Eq. h(r) = >, cigfmati(r),
(41) so thatL(B) C L(B,). Conversion is done with backward [
wavelet transforms. The matriM(f) is computed using the
formulas for matrix elements of a function, Eq$04)—(107),

The expansion of the product functidr)=f(r)g(r) in the
scaling function basi8; is given by

(123

wherec;=a;b; for all i. To computef x g, the vector represen-

tation for the functiorh(r) given by Eq.(123) is converted to
where we set the basisB using forward wavelet transforms.
i
f(g) = A(2kmart 1 (119 80 .
and 6o |
TABLE Il. Parameters used forslorbitals of hydrogenlike <
atoms. o or
z u Knin B 20
1 1.0 0 10 L
2 1.0 1 8 00 S eTE—
10° 10* 0001 0.01
10 0.25 2 12 rag
50 0.031 25 1 10
100 0.031 25 2 20 FIG. 2. Radial & wave functionsP;4(r) of hydrogenlike atoms

computed withL=8. Note the logarithmic scale faor
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105 T T L) T T Ll T 102 T T L) T T Ll T
1.00 LR - R 1.00 [ B @ oA B = =y
5 z=1 @ A % O
¥ o Z=2 O ¥ 2 O
of 0e5| & I uf 08| o 3 A&
w o zZ=100 & w ¥ g
A a4 O
0.90 | E 0.96 |- E
085 1 1 1 1 1 1 1 094 m 1 1 1 1 1 1
2 3 4 5 6 7 8 2 3 4 5 6 7 8
resolution levels (L) resolution levels (L)
FIG. 3. The & eigenvalues of hydrogenlike atoms wiflx 1, 2, FIG. 5. Energy eigenvalues 0622p, 3s, 3p, 3d, and 4 orbitals

10, 50, and 100. Ratio of the computed and exact values is showmf hydrogen withB=15, 20, 30, 30, 30, and 45, respectively. Ratio
of the computed and exact values is shown.

I. Basis change matriced;_,o and Lq_,;
1

The matriced ;_, andLy_, occur only in products with -
Okmaxtl

other matrices. This kind of matrix products is computed by
removing the row or the column corresponding to basis func-
tion go'gmi" or inserting a zero row or a zero column corre- See also Refq24] and[25].
sponding to that basis function.

> (126)

i=0

K. Negative values ofr

J. Evaluation of scalar products A negativer coordinate has no physical meaning for ra-
dial wave functions. However, interpolating wavelets consti-
When normalizing wave functions or evaluating the ex-tute a basis set for functions spacR) and their domain is
pectation values of operators we encounter integrals of thghe whole real axis. Interpolating wavelets and scaling func-
type tions that are located near zefice., nonzero values of the
. functions are concentrated near 2eilo not generally vanish
| :f f(r)g(r)dr (124) on thg negative.real axis, So we are not ablle to exclude the
negative real axis by choosing a suitable basis set. We choose
the basis set so that it is symmetrical around zero, so that for
or each basis functiotix) the functionZ(—x) is also in the basis
set; see Eq¥58) and(59). We actually solve the eigenprob-
Joc lem in both the positive and negative real axies, i.eB(if),
| =

0

f(r)(Ag)(r)dr. (1259  reR, is a solution of the eigenproblem then bder), r
0 =0, andP(-r), r=0, are wave functions. We may generally
get either odd or even solutions to the eigenproblem, i.e.,
- P(r)=P(-r) or P(r)=-P(-r). For hydrogenic computations
h(r)=f(r)(Ag)(r) in the scaling function basiBs (as in the e simply neglect the negativepart of the wave function
case of a product functionThe integral is then given by puyt the situation is more complex when HF equations are
solved. The operators used in HF computation yield either

We first compute the expansidn;) of the product function

T T A T O
<V>/<Vogn O 10 T T
_ 100 [ O O 9t
g A
éo 8t
v osr o ’ 7F -1%|  01%
A m
v o 6
090 | -
5}
0.85 1 1 1 1 1 1 1 1 4 7
2 3 4 5 8 7 8 9 3 . . , . . ,
resolution levels (L) 2 3 4 5 6 7 8 9
L
FIG. 4. Expectation values of the kinetic energy and potential
energy operators for the hydrogesdrbital. Ratio of the computed FIG. 6. Relative error of the hydrogers brbital eigenvalue;
and exact values is shown. unit of lengthu=0.6.
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10 L) L} L) L) L} 30 Ll Ll
9k
-0.001% 25 |
8 . 0.1% 0.01%| 0.001%
7+ 1% 0.1%( -0.01% A
m m 20}
6} 0%
5t 1 15 |
4 F .
0.1% -0.0001%
3 1 1 1 1 ] 10 L L
2 3 4 5 6 7 8 9 2 3 4 5 6 7
L L
FIG. 7. Relative error of the hydrogers brbital eigenvalue; FIG. 9. Relative error of the hydrogerprbital eigenvalue;
unit of lengthu=1.0. unit of lengthu=1.0.

odd or even functions. The parity of the functid® depends lution level. Various parameters affecting the computations
on the parity of the functiol® and in the case of the direct are also reported. .
integral and exchange integral operators also the parities of The bask|s_ sets wkere.formed so that thereStgpe basis

the wave functions from the previous iteration that are usedunctions ¢™3g, ... .o in resolution leveky;, andD type

to compute these operators themselves. Table | shows hob@sis functions g, ... .y, for k=Kmyin, ... Knin+L=2.

the operators needed in HF computations affect the paritiedereL is the number of resolution levels aidis a param-

of the functions. The functions yielded by the exchange in-€ter describing the number of basis functions in each resolu-
tegral operator and the other operators would have differeriton level. We coun, andDy__as two separate resolution
parities if we chose a wave function with parity different levels. The total number of basis functions is

from the output wave functions of the previous iteratisac- _ _

ond and thirF()j lines of the tat)l.eConschuentIy, the compu- N=4B+2(L-1)B=2B(L+1). (127)
tation would be wrong on the negative real axie ex-  In principle, the number of resolution levelsdetermines the
change integrals would have the wrong gighe have to use maximum possible accuracy of the computations with fixed
either odd or even wave functions during the whole HF it-k ., and unit of lengthu.

eration. We have chosen to use odd wave functions, which

have continuous first derivatives at the origin. B. Hydrogenlike orbitals

We solved the & orbitals for hydrogenlike atoms for
VII. NUMERICAL RESULTS atomic numberg=1, 2, 10, 50, and 100 using the basis sets
and length unitsu given in Table Il. The basis sets were
chosen large enough to cover the relevant radial range of the

We use eighth-order interpolating wavelets for numericalwave functions. The resultingslradial wave functions are

results. The unit of length is the atomic unit unless otherwiseshown in Figs. 1 and 2. There is no visible deviation of these
stated. We examine the convergence of the essential physicahve functions‘computed withL=8) from the correspond-
quantities toward the known exact or accurate values wheimg exact wave functions. Convergence of the eigenvalues
the number of resolution levels in increased. We also exame,, as a function of resolution level is presented in Fig. 3.
ine the effect of the number of basis functions in each resoThe exact values are

A. General

10 L) L} L) Ll L) 35 L) L} L) L) Ll
9k
st S0 r T
1% 0.1% 0.01%

7+ 1% -0.1% 0.01% |-

L m 25| .
6 L
i | -
ot g
3 1 ] 1 15 1 ] 1 1 1

2 3 4 5 2 3 4 5 6 7 8
L L
FIG. 8. Relative error of the hydrogers brbital eigenvalue; FIG. 10. Relative error of the hydrogers 8rbital eigenvalue;
unit of lengthu=1.4. unit of lengthu=1.0.
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TABLE lll. Parameters for HF computations. TABLE V. Results from Hartree-Fock calculations for lithium
and sodium. Deviation from the accurate vali@] is given in
Atom a Kinin B L parentheses so that negative deviation means that the computed
value is less than the accurate value.
He 1.0 1 10 2,.8
Li 1.0 1 20 2,..8 Li Na
Be 1.0 1 15 2,.,8
Ne 0.6 1 10 2,.8 E ~7.43217) ~161.36)
Na 0.7 1 20 2,.7 Pliter 17 2!
Mg 0.7 1 20 2.7 B1s T2.477%3) ~40.23)
Ar 07 5 25 2.7 €2 -0.196 30914) -2.782)
£2p -1.521-3)
€35 -0.18175)
72 (1s|2s) -5.7x 10 -5.9x10°8
e =" o (128 (1s|39) ~1.4x10°°
(2s]3s) -2.8xX1074

We see that accuracy within 1% is achieved already-A.

Expectation values of the kinetic energy and potential energy 43 ted in Figs. 9 and 10. Th lati .
operatorsT and V for the hydrogen & orbital (Z=1) are and < are presented in Fgs. ¥ anc . 1 [SElve eroris

- | ) computed byA =(x—Xg) /Xy wherex is the computed quantity
shown in Fig. 4. The most accurate=9) numerical values and x, its exact value. For each orbital, the Schrédinger

are £15=-0.499 996,(T),5=0.499 98, andV);s=-0.99998, equation was solved using all combinations with
the exact values for=1 being -1/2, 1/2, and -1, respec- =L in,Lmin* 1, ... Lmax and B=Byin,Bmin*t 1, ... Bmax tO
tively. Other orbitals of the hydrogen ato(8s, 2p, 3s, 3p, cover the ranges df andB.

3d, and 4) were also calculated. We used a unit of length  Note that for fixedL the limiting value for the orbital
u=1.0 and minimum resolution levél,;,=0. The resulting eigenvalue a8 tends to infinity is not théphysically) exact
orbital eigenvalues are shown in Fig. 5. Accuracy better thawvalue but one with & dependent shift. Therefore, the 0%
1% is achieved at. =4 for all the computed orbitals. As the contour appears in Figs. 7, 8, and 9.

orbital quantum numbef increases the results get more ac-
curate.

We also made a set of computations for hydrogsn2p,
and 3 orbitals where both the number of resolution levels We carried out HF calculations for helium, lithium, beryl-
and basis widtiB were varied. The hydrogersbrbital was lium, neon, sodium, magnesium, and argon atoms. Lithium
computed with unit of lengthu=0.6, 1.0, and 1.4, and the and sodium are open-shell and the others are closed-shell
other orbitals with unit of lengtlu=1.0. We used,,;;=0 in  atoms. The relevant computation parameters are given in
these computations. The relative error of the hydrogen 1Table Ill. The basis sets were formed the same way as for the
eigenvalug(compared to the exact analytical regudt plot-  hydrogen atom. The same value of the weight parameter
ted as a contour plot in Figs. 6, 7 and 8, where the lengthlefined by Eq(78) is used for all orbitalsg;= . The unit of
unitsu are 0.6, 1.0, and 1.4, respectively. Similar plots fpr 2 length wasu=1 in all HF calculations. A matrix one-norm

C. Hartree-Fock results for many-electron atoms

TABLE |IV. Results from Hartree-Fock calculations for helium, beryllium, neon, magnesium, and argon.
Deviation from the accurate valyg6] is given in parentheses so that negative deviation means that the
computed value is less than the accurate value.

He Be Ne Mg Ar
E -2.8615711)  -14.5713) -128.4510) -198.89) -525.811)
Niter 21 23 31 27 25
£1s 0.917 933) -4.73189) -32.735) -48.74) -118.25)
£0g -0.309 2%2) -1.9283) -3.752) -12.294)
&2p -0.850-4) -2.287-5) -9.577-6)
£36 -0.25256) -1.2744)
e3p -0.5916-6)
(1s]2s) -2.6x1077 -4.2x10° -5.6x10°8 -1.8x10°8
(1s|3s) -1.6x10°% -7.8x107°
(2s]3s) -8.9x10°8 -2.5x1078
(2p|3p) -1.4x 1078
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1.05 L} T L) T T L) L} 1.05 L} T L) T T L) L}
1.00 =g - 1.00 b fz}----- -
o ¢ @ a g ETTgTTeT
o o K He [ i 0
095 | < Be 0+ 095 | - o Na O-
s & Mg 3
W ooF O O a Ar &1 W o090 | 4
w v w 0]
0.85 | < 0.85 | 4
& B
0.80 | 4 0.80 | E
A
0.75 (D 1 1 1 1 1 L 0.75 1 G) 1 1 1 1 L
2 3 4 5 6 7 8 2 3 4 5 6 7 8
resolution levels (L) resolution levels (L)

FIG. 11. Computed total energies for helium, beryllium, neon, FIG. 12. Computed total energies for lithium and sodium. Ratio
magnesium, and argon. Ratio of computed and acc{@&levalues  of computed and accurafg6] values is shown.
is shown.

involves both development of algorithms, e.g., for conver-
sion of matrices from nonstandard operator form to standard
operator form, and testing with calculations. We have shown
how to consider the singularity of the nuclear Coulomb po-
ntial and the centrifugal potential as well as the Slater in-
egrals in evaluation of Hamiltonian and Fock matrix ele-
ents(see also Ref[16]).

We have tested numerically the computation methods for
he ground state of the hydrogen atom and hydrogenlike at-
ms, for excited states of hydrogen, and for some many-
lectron atoms. The numerical results converge to the accu-
rate or reference values as the number of resolution levels
increases. In principle, we should be able to make the error
arising from the wavelet approximation arbitrarily small by
enlarging the basis function set. Our numerical HF results
%rupport this. With a large number of resolution levgbout
eight-or morg¢ the computation time grows considerably. De-

ending on the properties of the algorithms we can use basis

ets with fewer resolution level(possibly only ong higher
minimum resolution, and more basis functions in each level.
However, the possibility of using several resolution levels is
one important benefit of wavelets. It might also be possible

We have demonstrated that interpolating wavelets can b optimize the computation by using convolutions in the
successfully used to solve the atomic orbitals and the elecomputation of backward and forward wavelet transforms
tronic structure of atoms. We are able to systematically inand products of operators with vectors instead of simply us-
crease the accuracy of the calculations by choosing the nunmag matrix products as done in this study.
ber of resolution levels and the number of basis functions in A noticeable feature in our development for the Hartree-
each level. Fock formalism is that all relevant operators, including those

In this study we have concentrated on the basic formalismmepresenting the two-electron integrals, can be evaluated ana-
and developed it down to practical computations. Our studyytically.

was used to compute the quantitieslefined by Eq.(79).
The value of the precision parametgrwas 100 in all HF
computations.

The orbital eigenvalues and total energies from the mo
accurate computation for each atom are given in Tables |
and V. These values are compared with the values from sta
dard HF calculations obtained from RE26]. Total energies
of atoms are plotted in Figs. 11 and 12. For helium, four,
resolution levels are needed to reach an accuracy of 1% wit
knin=21. For argon, six resolution levels are needed for thise
with ki,=2. The HF calculations converged in 16 to 31
steps depending on the number of resolution leveland
weight parametet.

The effect of neglecting nondiagonal Lagrange multipliers
can be seen from the overlap integrals between orbitals. F
the open-shell atom@ithium and sodiunthe largest overlap
integral is of the order of magnitude TOwhereas for the
closed-shell atoms all the overlap integrals are of the order
magnitude 10° or smaller.
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