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Abstract
We present a new method for the path integral formulation of elec-

tronic structure simulation. The time evolution operator is represented as
matrix in a basis consisting of Deslauriers–Dubuc or Daubechies wavelets.
We present a new approximation of the path integral kernel and a new
method for calculating wavefunctions using the path integral formula-
tion. The new kernel is tested by finding wavefunctions and energies of
one-dimensional and three-dimensional harmonic oscillators and hydrogen
atom in one and three dimensions.

Keywords: path integral, wavelet, quantum chemistry, hydrogen atom, quan-
tum physics, Fourier transform

1 Introduction
The path integral formulation of quantum dynamics was developed by Richard
Feynman in 1948. It generalizes the action principle of classical mechanics. In
path integral formulation the transient state at time t of a quantum system is
obtained from the initial state Ψ(xa, ta) by

Ψ(xb, tb) = Û(tb, ta)Ψ(xa, ta) =

∫
Rd

K(xb, tb;xa, ta)Ψ(xa, ta)dxa, (1)

where Û is the time evolution operator and d is the dimensionality of the system,
d = 1, d = 2, or d = 3. The kernel is given by

K(xb, tb;xa, ta) =

∫ b

a

exp

(
i

ℏ
S[x, ẋ]

)
Dx, (2)

where the integration is carried out over all paths with x(ta) = xa and x(tb) = xb

and the action is

S[x, ẋ] =

∫ tb

ta

L(x(t), ẋ(t))dt, (3)
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where L(x(t), ẋ(t)) is the Lagrangian of the system. See Ref. [1] for more details.
The path-integral method is often applied by using an imaginary time vari-

able [2]. Svensson [3] discusses the computation of the hydrogen atom with
the path integral method. Ho and Inomata [4] and Steiner [5] present an exact
treatment of the hydrogen atom with path integral formulation. Path integral
treatment of the quantum mechanical harmonic oscillator has been given for
example by Ruokosenmäki and Rantala [6].

Wavelets are a basis function set constructed by dilatations and transla-
tions of so called mother scaling function and mother wavelet. Mathematical
theory of interpolating wavelets has been developed by Chui and Li [7] and
Donoho [8]. Höynälänmaa [9] has generalized these results for the multivariate
case. Goedecker [10] gives an application-oriented introduction to interpolat-
ing wavelets. Höynälänmaa et al. [11] have made Hartree–Fock calculations of
atoms using an interpolating wavelet basis. Höynälänmaa and Rantala [12] have
also made three-dimensional Hartree–Fock and Density Functional Theory cal-
culations using interpolating wavelets for some atoms and two-atom molecules.
Orthonormal wavelets are presented e.g. by Daubechies [13].

Here, we use the Deslauriers–Dubuc interpolating wavelets [14, 15] and
Daubechies orthonormal wavelets [13]. Also, atomic units (e = me = ℏ =
4πε0 = 1) and the unitary angular frequency definition of the Fourier transform
are used throughout this article. We abbreviate “atomic units” by a.u. and units
“Hartree” and “Bohr” by Ha and B. Also, a stationary wavefunction is denoted
by χ as the symbol ψ is used for wavelets.

2 Path Integral Formulation
For a stationary system the time evolution operator is given by

Û(tb, ta) = exp(−i(tb − ta)Ĥ) (4)

where Ĥ is the Hamiltonian operator of the system. The time evolution of an
eigenstate of a stationary system χa is given by

Ψa(x, t) = exp(−iEat)χa(x) (5)

where Ψa is an eigenstate of the time-independent Hamiltonian and Ea is its
energy.

In path integral formulation the kernel (2) can be represented [1] as

K(xb, tb;xa, ta) = lim
N→∞

√
m

2πiϵ

Nd ∫
Rd

· · ·
∫
Rd

exp (iSN ) dx1 · · · dxN−1. (6)

For a one-particle system the action SN is given by [16]

SN = ϵ

N∑
n=1

(
m

2

(
xn − xn−1

ϵ

)2

− V (xn, tn)

)
(7)

and
ϵ =

tb − ta
N

. (8)
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We also define ∆t = tb − ta. The Trotter kernel is an approximation of the
path-integral kernel [6] given by

K(xb,xa; ∆t) =
( m

2πi∆t

)d/2
exp

(
i

(
m

2∆t
|xb − xa|2 −

∆t

2
(V (xb) + V (xa))

))
. (9)

3 Wavelet Bases

3.1 Interpolating Wavelets
The basis function set is constructed in the same way as in Ref. [12, section
3]. We assume that φ is some Deslauriers–Dubuc mother scaling function [7,
8, 9, 14, 15] and d is the dimensionality of the domain Rd. The multiresolu-
tion analysis for interpolating wavelets may be constructed either in the space
of bounded and uniformly continuous functions Cu(Rd) or in the space of con-
tinouous functions vanishing at infinity C0(Rd). Both of these spaces use the
supremum norm.

The mother scaling function φ satisfies the relation

φ(x) =
∑
µ

hµφ(2x− µ) (10)

and the mother wavelet is given by ψ(x) = φ(2x−1). We assume that the filter
hµ is finite in this article. This is true at least for Deslauriers–Dubuc wavelets.
The doubly indexed scaling functions are given by φj,k(x) = φ(2jx−k) and the
doubly indexed wavelets by ψj,k(x) = ψ(2jx − k). The dual scaling functions
are defined by φ̃j,k = 2jδ(2j · −k) and the dual wavelets by ψ̃j,k = 2jψ̃(2j · −k)
where

ψ̃ = 2
∑
ν

g̃νδ(2 · −ν) (11)

and g̃ν = (−1)ν−1h1−ν .
When an interpolating wavelet basis is constructed we select the minimum

resolution level jmin ∈ Z and an arbitrary function f in the space where the
MRA is constructed can be represented as

f(x) =
∑
k

cjmin,kφjmin,k(x) +

∞∑
j=jmin

∑
k

dj,kψj,k(x) (12)

where cjmin,k = ⟨φ̃jmin,k, f⟩ and dj,k = ⟨ψ̃j,k, f⟩. In practical computions we
truncate the basis set to be finite. We also define

ψs,j,k(x) =

{
φj,k(x); if s = 0
ψj,k(x); if s = 1

(13)

and

ψ̃s,j,k =

{
˜φj,k; if s = 0
˜ψj,k; if s = 1

(14)

For the three-dimensional case we define

φj,k(x) = φj,k[1](x[1])φj,k[2](x[2])φj,k[3](x[3]), (15)
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ψs,j,k(x) = ψs[1],j,k[1](x[1])ψs[2],j,k[2](x[2])ψs[3],j,k[3](x[3]), (16)

φ̃j,k = φ̃j,k[1] ⊗ φ̃j,k[2] ⊗ φ̃j,k[3], (17)

ψ̃s,j,k = ψ̃s[1],j,k[1] ⊗ ψ̃s[2],j,k[2] ⊗ ψ̃s[3],j,k[3], (18)

where j ∈ Z, k ∈ Z3, and s ∈ {0, 1}3. Now an arbitrary function in the space
where the MRA is constructed can be represented as

f(x) =
∑
k∈Z3

cjmin,kφjmin,k(x) +

∞∑
j=jmin

∑
s∈J+

∑
k∈Z3

ds,j,kψs,j,k(x) (19)

where cjmin,k = ⟨φ̃jmin,k, f⟩, ds,j,k = ⟨ψ̃s,j,k, f⟩, and J+ = {0, 1}3 \ {0, 0, 0}.
There is an alternative way to index the multi-dimensional basis functions in

a three-dimensional point grid. In this formulation the index is a point located
at the “peak” of the basis function (for the mother scaling function this peak is
located at the origin).

Define
Zj =

{
k

2j

∣∣∣∣k ∈ Z
}

(20)

and
Vj = Z3

j (21)

where j ∈ Z. Define sets Qj by

Qjmin
= Vjmin

(22)
Qj = Vj \ Vj−1 for j > jmin (23)

The point grid G shall be some finite subset of Vjmax . We use only bases with
one or two resolution levels j in this article. We define

Gj := G ∩Qj (24)

for j ≥ jmin.
Define

ηj,k :=

 φjmin,k; if j = jmin

φj−1,k/2; if j > jmin and k even
ψj−1,(k−1)/2; if j > jmin and k odd

(25)

η̃j,k :=


φ̃jmin,k; if j = jmin

φ̃j−1,k/2; if j > jmin and k even
ψ̃j−1,(k−1)/2; if j > jmin and k odd

(26)

When α ∈ Qj and j ≥ jmin define

ζα := ηj,k[1] ⊗ ηj,k[2] ⊗ ηj,k[3] (27)

and
ζ̃α := η̃j,k[1] ⊗ η̃j,k[2] ⊗ η̃j,k[3] (28)

where k = 2jα.
One-dimensional case is similar. We set Qj = Zj and ζα = ηj,k, ζ̃α = η̃j,k

for k = 2jα.
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3.2 Orthonormal Wavelets
We define the basis indices by I = Ijmin

∪ Ijmin+1 where Ij = {(j, k) : k ∈ Kj}
and Kj is a finite set of integer numbers (usually a range of integers). Now the
basis functions are defined by

ζj,k =

{
φjmin,k = 2j/2φ(2j · −k) j = jmin

ψj−1,k = 2(j−1)/2ψ(2j−1 · −k) j > jmin
(29)

where (j, k) ∈ I, φ is the mother scaling function of the wavelet family, and ψ
is the mother wavelet of the wavelet family.

We have

φ(x) =

M−1∑
k=0

akφ(2x− k), (30)

ψ(x) =

M−1∑
k=0

bkφ(2x− k), (31)

where M is a positive integer, ak are real numbers, and bk = (−1)kaM−1−k.
An arbitrary function f ∈ L2(R) can be represented as

f(x) =
∑
k

cjmin,kφjmin,k(x) +

∞∑
j=jmin

∑
k

dj,kψj,k(x) (32)

where
cjmin,k =

∫
R
φjmin,k(x)f(x)dx (33)

and
dj,k =

∫
R
ψj,k(x)f(x)dx. (34)

4 Stationary State Energies and Wavefunctions
Fourier transform has been used to determine the energy spectrum of a quantum
mechanical system with path integral formulation e.g. by Gholizadehkalkhoran
et al. [17].

A stationary state ψ of a quantum mechanical system can be represented by

χ(x) =

∞∑
k=0

ckχk(x) (35)

where functions χk are the eigenstates of the Hamiltonian operator of the system
and ck are complex numbers. The time evolution of the stationary states is given
by

Ψ(x, t) =

∞∑
k=0

ck exp(−iEkt)χk(x) (36)
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where Ek are the energies of the eigenstates. Suppose that we have a fixed point
x0 ∈ Rd and define g(t) := Ψ(x0, t). By making a Fourier transform we obtain

ĝ(ω) =
1√
2π

∫ ∞

t=−∞
g(t) exp(−iωt)dt (37)

=
1√
2π

∞∑
k=0

ckχk(x0)

∫ ∞

t=−∞
exp(−iEkt) exp(−iωt)dt (38)

=
√
2π

∞∑
k=0

ckχk(x0)δ(ω + Ek). (39)

Thus we may compute the eigenenergies of the system from the Fourier spectrum
of function g.

Suppose that we have a stationary system with initial state χi(x) = Ψ(x, ti)
and final state χf (x) = Ψ(x, tf ) and assume that the time interval ∆t := tb− ta
is small. We have

χf (x)− χi(x) = (exp(−iEt)− 1)χi(x) ≈ −iEtχi(x) (40)

from which we obtain

E ≈ − 1

∆t
Im

χf (x)− χi(x)

χi(x)
(41)

and
⟨E⟩ ≈ − 1

∆t
Im

∫
Rd

(χf (x)− χi(x)) (χi(x))
∗dx. (42)

The initial function of the time evolution should be chosen so that it has a
broad Fourier spectrum and it should also contain both even and odd terms.
So we chose to approximate the sum of delta function and its derivative at the
origin with a scaling function centred at the origin and its derivative in the
one-dimensional case. In some calculations function −φjmin,−1 + φjmin,1 is used
instead of the derivative. In three dimensions the tensor products of functions
(−1− i)φjmin,−1 + (1 + i)φjmin,0 + (1 + i)φjmin,1 are used.

The continuous Fourier transform is computed by the method described in
[18, section 2]. We have also generalized it into three dimensions.

Let xj , j = 1, . . . , N be the points where the wavefunction of state k shall be
calculated. Let gj(t) := Ψ(xj , t) and ∆E be the spacing between points in the
Fourier spectrum ĝj(E). We approximate the Dirac δ functions in equation (39)
with a Gaussian function and we assume that the overlaps of the approximated
peaks can be neglected. The square of each Gaussian peak is another Gaussian
peak and the peak k is fitted to the Gaussian distribution

Gk,j(E) =
1

σk,j
√
2π

exp

(
− (E + Ek)

2

2σ2
k,j

)
(43)

using the computed values of |ĝj(E)|2. Define

pk,j = |ĝj(−Ek)|2 (44)

and
p′k,j =

1

2

(
|ĝj(−Ek +∆E)|2 + |ĝj(−Ek −∆E)|2

)
. (45)
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Note that |ĝj(E)|2 is the Fourier transform of the autocorrelation function of
gj(t) multiplied by a constant. Let dk,j = |ckfk(xj)|2 be the undefined variables.
We now set

pk,j = dk,jGk,j(−Ek) = dk,j
1√
2π

1

σk,j
(46)

and

p′k,j = dk,jGk,j(−Ek +∆E) = dk,j
1√
2π

1

σk,j
exp

(
−∆E2

2σ2
k,j

)
(47)

It follows that
dk,j =

√
2πσk,jpk,j (48)

and

σk,j = ∆E/

√
2 ln

pk,j
p′k,j

. (49)

The FWHM (full width at half maximum) Γk,j of the peak k computed at point
xj determines quantity σk,j [19]:

σk,j =
1

2
√
2 ln 2

Γk,j . (50)

The product of the height of a peak and its FWHM determines the probability
density of eigenstate χk at the point xj where the spectrum is computed, see
formulas (48) and (50).

5 Approximation of the Path Integral Kernel
We assume that the potential V is time-independent. The kernel is approxi-
mated by setting N = 2. Thus

K2(xb,xa; ϵ) :=
( m

2πiϵ

)d ∫
Rd

exp (iS2) dx1. (51)

We have
K2(xb,xa; ϵ) =

( m

2πiϵ

)d
I (52)

where

I :=

∫
x1∈Rd

exp(iS2)dx1 (53)

=

∫
x1∈Rd

exp

(
iϵ

(
m

2

(
x1 − xa

ϵ

)2

− V (x1)

+
m

2

(
xb − x1

ϵ

)2

− V (xb)

))
dx1 (54)

= exp
(
i
(m
2ϵ

(
x2
b + x2

a

)
− ϵV (xb)

))
∫
x1∈Rd

exp
(
i
(m
ϵ
x2
1 − ϵV (x1)

))
exp

(
−i
m

ϵ
(xb + xa) · x1

)
dx1 (55)

=
√
2π

d
exp

(
i
(m
2ϵ

(
x2
b + x2

a

)
− ϵV (xb)

))
ĥ
(m
ϵ
(xb + xa)

)
(56)
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and
h(x1) := exp

(
i
(m
ϵ
x2
1 − ϵV (x1)

))
. (57)

Now

K2(xb,xa; ϵ) =
( m

2πiϵ

√
2π
)d

exp
(
i
(m
2ϵ

(
x2
b + x2

a

)
− ϵV (xb)

))
ĥ
(m
ϵ
(xb + xa)

)
.

(58)
We call this kernel the midpoint kernel.

If function h is radially symmetric (i.e. the potential is radially symmetric)
we have

ĥ(k) =
i

2k

(
f̂(k)− f̂(−k)

)
, (59)

where f(r) = rhrad(|r|) and h(r) = hrad(|r|). Note that the Fourier transform
of f in equation (59) is one-dimensional. See Ref. [1, section 3-11] for another
Fourier transform based approach to the path integral formulation.

6 Quantum Harmonic Oscillator and Hydrogen-
like Atom

The potential of the one-dimensional harmonic oscillator is

V (x) =
mω2

0

2
x2 (60)

where m is the mass of the particle and ω0 is the angular frequency. The
potential of the isotropic three-dimensional harmonic oscillator is

V (x) =
mω2

0

2
|x|2. (61)

The kernel for the one-dimensional harmonic oscillator can be computed
exactly [1]. We have

K(xb, xa; t) =

(
mω0

2πi sin(ω0t)

)1/2

exp(iScl), (62)

where Scl is the classical action given by

Scl =
mω0

2 sin(ω0t)

(
(x2b + x2a) cos(ω0t)− 2xbxa

)
. (63)

By substituting the potential of the one-dimensional harmonic oscillator to
equation (57) we obtain

h(x1) = exp

(
i
m

ϵ

(
1− ϵ2ω2

0

2

)
x21

)
. (64)

Define

c :=
m

ϵ

(
1− ϵ2ω2

0

2

)
(65)
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and assume that c > 0. Now

ĥ(k) =
1

2
(1 + i)

1√
c
exp

(
−i
k2

4c

)
. (66)

Similarly, in the three-dimensional case we have

ĥ(k) =
1

4
(−1 + i)c−3/2 exp

(
−i
k2

4c

)
(67)

using equation (59).
The potential of a hydrogen-like atom is

V (x) = − Z

|x|
(68)

in one dimension and
V (x) = − Z

|x|
(69)

in three dimensions. Here Z is the atomic number. The Trotter kernel for a
hydrogen-like atom is computed by equation (9) and the midpoint kernel by
equation (58).

7 Representation of the Path-Integral Kernel in
Wavelet Bases

7.1 Interpolating Wavelets
The interpolating mother scaling function can be represented as [7, 9]

φ(x) =
∑
α∈Z

s[α]φ(2Jx− α) (70)

where J is some nonnegative integer and s[α], α ∈ Z, are constants that depend
on the mother scaling function and J . We define s0[α] to be the coefficients for
J and s1[α] for J − 1. We now have

ηjmin,k(2
−J−jminp) = s0[p− 2Jk] (71)

for all p ∈ Z,
ηjmin+1,k(2

−J−jminp) = s0[p− 2J−1k] (72)

for all p ∈ Z and k even integer, and

ηjmin+1,k(2
−J−jminp) = s1[p− 2J−1k] (73)

for all p ∈ Z and k odd integer. We also have

η̃jmin,ℓ = φ̃jmin,ℓ = δ(· − 2−jminℓ) (74)

for all ℓ ∈ Z,

η̃jmin+1,ℓ = δ(· − 2−jmin−1ℓ) =
∑
β∈Z

h̃βδ(· − 2−jmin−1(β + ℓ)) (75)
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for all ℓ ∈ 2Z, and

η̃jmin+1,ℓ =
∑
β∈Z

g̃βδ(· − 2−jmin−1(β + ℓ− 1)) (76)

for all ℓ ∈ 2Z+ 1.
The matrix of the time evolution operator in the interpolating wavelet basis

is
Kr,q =

∫
Rd

∫
Rd

ζ̃r(y)K(y,x; ϵ)ζq(x)dxdy. (77)

It follows from equation (11) that the dual wavelets ζ̃r are finite sums of delta
distributions. Consequently the integration over y is actually a weighted sum
of values of the function ∫

Rd

K(y,x; ϵ)ζq(x)dx

in finite number of points y. When r = 2−jminℓ ∈ Gjmin we have

Kr,q =

∫
Rd

K(2−jminℓ,x; ϵ)ζq(x)dx. (78)

In one-dimensional case the integral over x is approximated by∫
R
K(y, x; ϵ)ζq(x)dx ≈ 2−jmin−J

∑
p∈Z

K(y, 2−jmin−Jp; ϵ)st(q)(p− 2J−t(q)k) (79)

where k ∈ Z, q = 2−jmink ∈ Gjmin
or q = 2−jmin−1k ∈ Gjmin+1, and

t(q) :=

{
1 if q ∈ Gjmin+1

0 if q ∈ Gjmin .
(80)

For the three-dimensional case define

T (q) :=

{
1 if q ∈ Gjmin+1

0 if q ∈ Gjmin

(81)

and
ti(q) :=

{
1 if q ∈ Gjmin+1 and 2jmin+1q[i] odd
0 otherwise (82)

for i = 1, 2, 3. Define also t(q) := (t1(q), t2(q), t3(q)) and

st[z] := st[1][z[1]]st[2][z[2]]st[3][z[3]]. (83)

Now we can approximate∫
R3

K(y,x; ϵ)ζq(x)dx ≈ 2−3(jmin+J)
∑
p∈Z3

K(y, 2−jmin−Jp; ϵ)st(q)[p− 2J−T (q)k]

(84)
where k ∈ Z3 and q = 2−jmink ∈ Gjmin

or q = 2−jmin−1k ∈ Gjmin+1. We pick
some value J0 ≥ 2 and for r ∈ Gjmin+1 we use value J = J0 − 1 in equation (70)
and J = J0 otherwise. The lower accuracy is used because the matrix elements
where q belongs to the finer grid are significantly more complex to compute as
the ones in the coarser grid.

We use 8th order Deslauriers–Dubuc wavelets for one-dimensional calcula-
tions and 4th order Deslauriers–Dubuc wavelets for three-dimensional calcula-
tions.
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7.2 Orthonormal Wavelets
In order to compute the values of the orthonormal wavelets we use the repre-
sention

φ(x) = 2J/2
∑
α∈Z

w[α]φ(2Jx− α) (85)

where J is some nonnegative integer and w[α], α ∈ Z, are constants that depend
on the mother scaling function and J . The matrix elements of the time-evolution
operator are given by

Kj,k,j′,k′ =

∫
R

∫
R
ζj,k(y)K(y, x; ϵ)ζj′,k′(x)dxdy (86)

with orthonormal wavelets. The 20th order Daubechies wavelets are used in
this study. We use only one-dimensional orthonormal wavelets.

8 Test Results
Unless otherwise stated the calculations use Deslauriers–Dubuc wavelets. The
vertical axes of the energy spectra contain quantity |G(E)|, where G(E) is an
approximation of function ĝ(−E) and function g is defined in section 4. The
notation of the spectra is the following:

• The locations of the peaks determine the energy eigenstates of the system.

• The heights and widths of the peaks determine the values of the probability
densities at the points where the spectra are computed.

The construction of the basis sets has been presented in section 3. For
Deslauriers–Dubuc wavelets, the notation for the point grid G is

G = 2−jmin{k0min, . . . , k
0
max}d (87)

or
G = 2−jmin{k0min, . . . , k

0
max}d ∪ 2−jmin−1{k1min, . . . , k

1
max}d (88)

where d is the dimensionality of the system, d = 1 or d = 3. For Daubechies
wavelets, the notation for the basis set is

I = {(jmin, k) : k = k0min, . . . , k
0
max} (89)

or

I = {(jmin, k) : k = k0min, . . . , k
0
max} ∪ {(jmin +1, k) : k = k1min, . . . , k

1
max}. (90)

The time step ∆t = tb − ta has been defined by equations (6), (7), and (8).
The scaling function resolution J has been defined in section 7.
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8.1 Harmonic Oscillator
The one-dimensional harmonic oscillator is calculated with the exact kernel,
Trotter kernel, and midpoint kernel. We compute all these system with both
one and two resolution levels of the basis functions for ∆t = 1.0 a.u. and one
resolution level for ∆t = 0.5 a.u. and ∆t = 0.25 a.u. The mass of the particle
is 1 a.u. and the angular frequency 0.1 radians. All these calculations yield
the ground state energy 0.050265 Ha and first excited state 0.150796 Ha or
0.149226 Ha. The basis (1/4){−48, . . . , 48} is used for one-level calculations
and the basis (1/4){−48, . . . , 48} ∪ (1/8){−5, . . . , 5} for two-level calculations.
We use scaling function resolution J = 3. The energy spectrum for the exact
kernel is plotted in Fig. 1 and for the midpoint kernel in Fig. 2. Both of these
calculations use two resolution levels. The wavefunction of the one-dimensional
harmonic oscillator calculated with the method described in section 4 is plotted
in Fig. 3.

The three-dimensional harmonic oscillator is calculated using the midpoint
kernel and the Trotter kernel. The mass of the particle is 1 a.u. and the angular
frequency 0.1 radians. We use basis {−10, . . . , 10}3 and mother scaling function
resolution J = 2. The resulting ground state energy for the midpoint kernel
is E0 = 0.150796 Ha and the first excited state E1 = 0.249757 Ha for ∆t =
4.0 a.u.. For ∆t = 2.0 a.u. the energies are E0 = 0.150796 Ha and E1 =
0.251327 Ha. The energy spectrum for ∆t = 2.0 a.u. is plotted in Fig. 4. For
the Trotter kernel the energies are E0 = 0.150796 Ha and E1 = 0.251327 Ha for
both ∆t = 4.0 a.u. and ∆t = 2.0 a.u..

8.2 Hydrogen Atom
When the Deslauriers–Dubuc (interpolating) wavelets are used for the hydrogen
atom the midpoint kernel calculations work for parameter ∆t = 1 a.u. but not
for ∆t = 0.5 a.u. So we calculated this system with Daubechies (orthonormal)
wavelets using both Trotter and midpoint kernels. For one resolution level calcu-
lations the basis {(2,−48), . . . , (2, 48)} is used and for the two-level calculations
the basis {(1,−24), . . . , (1, 24)} ∪ {(2,−6), . . . , (2, 6)}. We set the mother scal-
ing function resolution to J = 5. The resulting ground state energies and first
excited state energies are presented in figures 5 and 6. It can be seen that for the
same time parameter the midpoint kernel yields usually better energy compared
to the Trotter kernel but the Trotter kernel accepts smaller time parameters.
The best energy for the Trotter kernel is E0 = −0.502655 Ha and if the energies
smaller that the exact energy are neglected we get E0 = −0.494801 Ha. The
best energy for the midpoint kernel is E0 = −0.496372 Ha. As regards the first
excited state, the best energy for the Trotter kernel is E1 = −0.125664 Ha and
for the midpoint kernel E1 = −0.119381 Ha.

The best energy spectrum for the Trotter kernel is plotted in Fig. 7 and for
the midpoint kernel in Fig. 8. The radial probability density function of the
hydrogen atom calculated in one dimension with the the method described in
section 4 is plotted in Fig. 9.

We make three-dimensional calculations of the hydrogen atom using the mid-
point kernel and the Trotter kernel. The basis function set is (1/2){−9, . . . , 9}3∪
(1/4){−4, . . . , 4}3. The function ĥ(k) for the midpoint kernel is calculated with
formula (59). The sign of the midpoint kernel (58) has to be inverted in order to
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get the energy computation to work. We get energy E = −0.537212 Ha for the
midpoint kernel with parameter ∆t = 2.0 a.u. and value ∆t = 1.5 a.u. does not
yield reasonable results. For the Trotter kernel we get E = −0.471239 Ha with
parameter ∆t = 0.2 a.u. and value ∆t = 0.125 a.u. does not give reasonable
results.

9 Conclusions
The new issues in this article are:

• Use of Deslauriers–Dubuc and Daubechies wavelets with the path integral
formulation

• The midpoint kernel approximation of the path integral kernel

• A method to compute probability density of a quantum state with the
path integral formulation

We estimate the goodness of the test results by comparing the energy eigen-
values to the exact energies of the test systems and comparing the computed
probability density curves to the exact ones. The relative errors of the computed
energies were:

• Ground state and first excited state of the one-dimensional harmonic os-
cillator: 0.5%

• Ground state and first excited state of the three-dimensional harmonic
oscillator: 0.5%

• Hydrogen atom ground state computed with one dimension and the mid-
point kernel: 0.7%

• Hydrogen atom first excited state computed with one dimension and the
midpoint kernel: 4%

• Hydrogen atom ground state computed with three dimensions and the
midpoint kernel: 7%

These results are good except the last two ones. However, these energies are
reasonable approximations. Our algorithm gave good results for the probability
density functions: the computed and exact curves were almost the same. Both
the Deslauriers–Dubuc wavelets and Daubechies wavelets were useful basis sets
for the computations. It turned out that when the time step parameter ∆t is the
same the midpoint kernel gives usually better energy than the Trotter kernel for
the hydrogen atom (one and three dimensions) but the Trotter kernel accepts
smaller values for ∆t. The two kernels yield approximately the same energy for
the harmonic oscillator.

Note that many different calculations yield exactly same energy values be-
cause the energy spectrum ĝ(−E) is approximated by the Discrete Fourier
Transform, for which the energy values are discrete. Ruokosenmäki [16] has
discussed the behavior of the path integral kernel with small values of ∆t, too.
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Figure 1: Energy spectrum of the one-dimensional harmonic oscillator computed
with the exact kernel.
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Figure 2: Energy spectrum of the one-dimensional harmonic oscillator computed
with the midpoint kernel.
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Figure 3: Probability density function F (x) = |ψ(x)|2 of the one-dimensional
harmonic oscillator computed with the exact kernel.
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Figure 4: Energy spectrum of the three-dimensional harmonic oscillator calcu-
lated with the midpoint kernel.
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Figure 5: Energies of the hydrogen atom ground state. “Midpoint” and “Trotter”
denote the kernel type and “r.l.” stands for number of resolution levels.
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Figure 6: Energies of the first excited state of the hydrogen atom. “Midpoint”
and “Trotter” denote the kernel type and “r.l.” stands for number of resolution
levels.
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Figure 7: Energy spectrum of the hydrogen atom computed with the Trotter
kernel in one dimension.
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Figure 8: Energy spectrum of the hydrogen atom computed with the midpoint
kernel in one dimension.
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Figure 9: Radial probability density function |P1s(r)|2 of the hydrogen atom
computed with the midpoint kernel in one dimension.
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